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A new high-resolution and genuinely multidimensional numerical method for solv-
ing conservation laws is being developed. It was designed to avoid the limitations
of the traditional methods and was built from ground zero with extensive physics
considerations. Nevertheless, its foundation is mathematically simple enough that
one can build from it a coherent, robust, efficient, and accurate numerical frame-
work. Two basic beliefs that set the new method apart from the established methods
are at the core of its development. The first belief is that, in order to capture physics
more efficiently and realistically, the modeling focus should be placed on the original
integral form of the physical conservation laws, rather than the differential form. The
latter form follows from the integral form under the additional assumption that the
physical solution is smooth, an assumption that is difficult to realize numerically in
a region of rapid change, such as a boundary layer or a shock. The second belief
is that, with proper modeling of the integral and differential forms themselves, the
resulting numerical solution should automatically be consistent with the properties
derived from the integral and differential forms, e.g., the jump conditions across
a shock and the properties of characteristics. Therefore a much simpler and more
robust method can be developed by avoiding the explicit use of the above derived
properties. Specifically, to capture physics as fully as possible, the method requires
that: (i) space and time be unified and treated as a single entity; (ii) both local and
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global flux conservation in space and time be enforced; and (iii) a multidimensional
scheme be constructed without using the dimensional-splitting approach, such that
multidimensional effects and source terms (which are scalars) can be modeled more
realistically. To simplify mathematics and broaden its applicability as much as pos-
sible, the method attempts to use the simplest logical structures and approximation
techniques. Specifically, (i) it uses a staggered space-time mesh such that flux at
any interface separating two conservation elements can be evaluated internally in
a simpler and more consistent manner, without using a separate flux model; (ii) it
avoids the use of many well-established techniques such as Riemann solvers, flux
splittings, and monotonicity constraints such that the complications and possibly
even the limitations associated with them may be avoided; and (iii) it avoids the use
of special techniques that are not applicable to more general problems. Furthermore,
triangles in 2D space and tetrahedrons in 3D space are used as the basic building
blocks of the spatial meshes, such that the method (i) can be used to construct 2D
and 3D nondissipative schemes in a natural manner; and (ii) is compatible with the
simplest unstructured meshes. Note that while numerical dissipation is required for
shock capturing, it may also result in annihilation of small disturbances such as
sound waves and, in the case of flow with a large Reynolds number, may overwhelm
physical dissipation. To overcome this difficulty, two different and mutually comple-
mentary types of adjustable numerical dissipation are introduced in the present deve-
lopment. c© 1999 Academic Press

Key Words:space-time; flux conservation; conservation element; solution element;
shocks; contact discontinuities.

1. INTRODUCTION

Since its inception in 1991 [1], the space-time conservation element and solution element
method (the CE/SE method) [1–25] has been used to obtain highly accurate numerical
solutions for 1D, 2D, and 3D flow problems involving shocks, contact discontinuities,
vortices, acoustic waves, boundary layers, chemical reactions and hydraulic jump. The
method can be applied to both steady and unsteady flow fields in different speed ranges
(subsonic, transonic, and supersonic). It is also genuinely multidimensional and compatible
with unstructured meshes in both 2D and 3D [12–14]. To answer frequently-asked questions
and clarify possible misconceptions, we shall begin this paper with an overall view of the
CE/SE method.

Before proceeding, note that in the present paper the reader will often be referred to
[7] for the details that are not presented here. This practice is required by the need to
cut down the length of this manuscript. To lessen the inconvenience, the paper [7] is
posted on and can be downloaded from Section Technical Details of the CE/SE web site:
http://www.grc.nasa.gov/www/microbus. Furthermore, the reader can also obtain the hard
copies of [7] and other CE/SE related papers by sending e-mail to the first author.

Currently, the field of computational fluid dynamics (CFD) represents a diverse collection
of numerical methods, with each of them having its own limitations. Generally speaking,
these methods were originally introduced to solve special classes of flow problems. Devel-
opment of the CE/SE method is motivated by a desire to build a brand new, more general
and coherent numerical framework that avoids the limitations of the traditional methods.

The CE/SE method was first published in this journal in 1995 [2]. It was shown in [2] that
a simple CE/SE scheme is highly accurate in solving Sod’s shock-tube problem. Recently,
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the accuracy of this scheme in solving Harten’s shock-tube problem was also evaluated
against other schemes by Battenet al. [3]. They concluded that “the result. . . is quite
remarkable, considering that the internal details of the Riemann fan are never used and,
indeed, are never needed, because the entire Riemann fan is contained within the region of
integration.” They went on to conclude that “in fact, solutions produced with this scheme are
broadly comparable to conventional MUSCL schemes. . ..” This conclusion is echoed by
the results of a recent accuracy study of a CE/SE solver for the Saint Venant equations [4, 5].

The new method is built on a set of design principles that were discussed and justified in
[2]. They include: (i) enforcing both local and global flux conservation in space and time,
with flux evaluation at an interface being an integral part of the solution procedure and
requiring no interpolation or extrapolation; (ii) unifying space and time and treating them
as a single entity; (iii) considering mesh values of dependent variables and their derivatives
as independent variables, to be solved for simultaneously; (iv) using only local discrete
variables rather than global variables like the expansion coefficients used in spectral meth-
ods; (v) defining conservation elements and solution elements such that the simplest stencil
will result; (vi) requiring that, as much as possible, a numerical analogue be constructed
so as to share with the corresponding physical equations the same space–time invariant
properties, such that numerical dissipation can be minimized [9]; (vii) excluding the use of
characteristics-based techniques (such as Riemann solvers); and (viii) avoiding the use of
ad hoc techniques as much as possible.

Moreover, the development of the CE/SE method is also guided by two basic beliefs
that set it apart from the established methods. The first belief is that, in order to capture
physics more efficiently and realistically, the modeling focus should be placed on the original
integral form of the physical conservation laws, rather than the differential form. The latter
form follows from the integral form under the additional assumption that the physical
solution is smooth, an assumption that is difficult to realize numerically in a region of rapid
change, such as a boundary layer or a shock. The second belief is that, with proper modeling
of the integral and differential forms themselves, the resulting numerical solution should
automatically be consistent with the properties derived from the integral and differential
forms, e.g., the jump conditions across a shock and the properties of characteristics. In other
words, a much simpler and more robust method can be developed by avoiding the explicit
use of the above derived properties.

It will be shown in Section 2 that the spatial meshes used in the new 2D CE/SE schemes
to be described are built from triangles (in such a manner that the resulting meshes are
completely different from those used in the finite element method). As a result, these
schemes are (i) compatible with the simplest unstructured meshes [13] and (ii) constructed
without using the traditional dimensional-splitting approach. Note that the dimensional-
splitting approach is flawed in several respects [26]. In particular, because a source term is
not aligned with a special direction, it is difficult to imagine how this dimensional-splitting
approach, in a logically consistent manner, can be used to solve a multidimensional problem
involving source terms, such as those modeling chemical energy release [15–17].

Moreover, because the CE/SE 2D schemes share with their 1D versions the same design
principles, not only is the extension to 2D a straightforward matter, each of the new 2D
schemes also shares with its 1D version virtually identical fundamental characteristics.

At this juncture, note that monotonicity conditions are not observed by general flow
fields, e.g., those involving ZND detonation waves [15,16]. For this reason and the fact that
their use may introduce excessive numerical dissipation, techniques involving monotonicity
constraints so far have not been used in the CE/SE development.
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To give the reader, in advance, a concrete example that demonstrates the validity of the two
basic beliefs referred to earlier, an extended Sod’s shock tube problem is considered here.
This extended problem is the original Sod’s problem [27] with the additional complication of
imposing a nonreflecting boundary condition at each end of the computational domain. Note
that the flow under consideration contains discontinuities and, relative to the computational
frame, is subsonic throughout. It is well known that implementing a nonreflecting boundary
condition for a subsonic flow is much more difficult than doing the same for a supersonic
flow. This difficulty is further exacerbated by the fact that the traditional nonreflecting
boundary conditions [28], such as those using the properties of characteristics, are all based
on an assumption that is not valid for the present case, i.e., that the flow is continuous. In spite
of the fact that the extended problem is substantially more difficult than the original problem,
the former can be solved by a simple CE/SE scheme that is explained in Section 2.8 of [7].
The main loop of the Fortran program (listed in Appendix A of [7], and also on pp. 229–230
of [6]) implementing this scheme contains only 39 Fortran statements, with none of them
calling any subprogram or using any function defined outside the loop. Not only is it very
small in size, but this program has a very simple logical structure. With the exception of a
single “if” statement used to identify the time levels at which the nonreflecting boundary
conditions must be imposed, it contains no conditional Fortran statements or functions such
as “if,” “amax,” or “amin” that are often used in programs implementing high-resolution
upwind methods. The small size of the program reflects the simplicity of the techniques
employed by the CE/SE method to capture shock waves. It also results from the fact that the
nonreflecting boundary conditions used in the present solver are the simple extrapolation
conditions: (i)

(um)
n
j = (um)

n−1/2
j−1/2 and (umx)

n
j = (umx)

n−1/2
j−1/2, m= 1, 2, 3; n = 1, 2, 3, . . . , (1.1)

if ( j, n) is a mesh point on the right spatial boundary (see Fig. 1); and (ii)

(um)
n
j = (um)

n−1/2
j+1/2 and (umx)

n
j = (umx)

n−1/2
j+1/2, m= 1, 2, 3; n = 1, 2, 3, . . . , (1.2)

if ( j, n) is a mesh point (a dot in Fig. 1) on the left spatial boundary (note:(um)
n
j and

(umx)
n
j are the independent numerical variables at the mesh point( j, n) [2]). On the other

FIG. 1. The staggered space-time mesh.



THE SPACE-TIME CE/SE METHOD 93

FIG. 2. The CE/SE solution of the extended Sod’s problem with boundary conditions Eqs. (1.1) and (1.2)
(1t = 0.004,1x= 0.01, CFL≈ 0.88).

hand, the absence of Fortran conditional statements is a result of avoiding the use of ad
hoc techniques. In spite of its simplicity, according to the comparisons of the numerical
results (including the right and left boundary values and denoted by triangles) and the exact
solutions (denoted by solid lines) shown in Figs. 2(a–c) (see [7] for velocity and pressure
profiles), the present solver is capable of generating nearly perfect nonreflecting solutions.
Note that, att = 10, the exact solution is constant across the computational domain. It is
shown in [7] that the maximum numerical errors in density, velocity, and pressure are all
less than 0.15% of the exact values.

Note that Eqs. (1.1) and (1.2) represent only one of many sets of simple and robust
nonreflecting boundary conditions developed in [19] for the CE/SE method. Behind this
development is a new concept based entirely on an assumption about the space-time flux
distribution in the neighborhood of a spatial boundary. As it turns out, the new concept
leads to the surprising conclusion that, albeit of lower order of accuracy, the steady-state
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FIG. 3. The CE/SE solution of the extended Sod’s problem with boundary conditions Eq. (1.3) (1t =
0.004,1x= 0.01,CFL≈ 0.88).

boundary conditions

(um)
n
j = (um)

0
j and (umx)

n
j = (umx)

0
j , m= 1, 2, 3; n = 1, 2, 3, . . . , (1.3)

where( j, n) is any mesh point on the right or left boundary, are also nonreflective if they
are applied in conjunction with the CE/SE method. The density profiles att = 0.4 and 0.6,
computed using an alternative solver that is identical to the solver referred to earlier except
that the boundary conditions Eqs. (1.1) and (1.2) are replaced by Eq. (1.3), are compared
with the exact solutions in Fig. 3a and 3b (see [7] for the velocity and pressure profiles). Note
that, att = 0.2, the numerical solutions generated by the alternative and the original solvers
are identical. According to Fig. 3a, by the timet = 0.4, the shock wave has passed cleanly
through the right boundary. There is good agreement between the numerical solution and
the exact solution everywhere in the interior except for a slight disagreement in the vicinity
of the right boundary. Note that the right boundary values, which do not vary with time,
are discontinuous with respect to the neighboring interior values. According to Fig. 3b,
by the timet = 0.6, the contact discontinuity has also passed through the right boundary.
Agreement between the numerical solution and the exact solution continue to be good in the
interior. However, both left and right boundary values are now discontinuous with respect
to the neighboring interior values.

Note that several recent applications [20, 21, 25] of the CE/SE method to 2D aeroacoustics
problems reveal that: (i) the trivial nature of implementing CE/SE non-reflecting boundary
conditions is manifested even for 2D problems; (ii) accuracy of the numerical results for
nonlinear Euler problems is comparable to that of a fourth to sixth order compact difference
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scheme, even though nominally the CE/SE solver used is only of second-order accuracy;
and (iii) most importantly, the CE/SE method is capable of accurately modeling both small
disturbances and strong shocks. The following comments are for items (ii) and (iii):

(a) Assuming the same order of accuracy, generally speaking, the accuracy of a scheme
that enforces the space–time flux-conservation property is higher than that of a scheme that
does not. A compact scheme generally does not enforce the flux-conservation property of the
nonlinear Euler equations. On the contrary, not only is the present scheme flux-conserving,
its accuracy in nonlinear calculations is enhanced by its surprisingly small dispersive errors
[2, 20, 21, 25]. Moreover, the nominal order of accuracy of a Euler solver is determined
assuming a linearized form of the Euler equations and that the solution is smooth. Thus,
its significance with respect to a nonlinear and/or nonsmooth solution of the full Euler
equations may be questionable. As a matter of fact, it was shown by Casper and Carpenter
[29] that, for the unsteady Euler equations, solutions generated by high-order schemes
(including ENO schemes) generally are only first-order accurate downstream of a shock.

(b) While numerical dissipation is required for shock resolution, it may also result in
annihilation of small disturbances such as sound waves. Thus, a solver that can handle both
small disturbances and strong shocks must be able to overcome this difficulty.

To pave the way for the later 2D developments, next we shall briefly discuss thea scheme
(i.e., the inviscid version of thea-µ scheme [2]) and its role in the CE/SE development. To
proceed, note that: (i) thea-µ scheme is a solver of the PDE

∂u

∂t
+ a

∂u

∂x
− µ∂

2u

∂x2
= 0, (1.4)

wherea andµ ≥ 0 are constants; and (ii) thea scheme is nondissipative (note: to the best
knowledge of the authors, thea scheme is the only two-level, explicit, and nondissipative
solver of Eq. (1.4) withµ= 0). Because thea-µ scheme reduces to thea scheme when the
viscosityµ= 0, it follows from (i) and (ii) that thea-µ scheme has the important property
that the numerical dissipation of its solutions approaches zero as the physical dissipation
approaches zero. Note that, in principle, the nagging problem of physical dissipation being
overwhelmed by numerical dissipation in a nearly inviscid problem can be overcome by
using a scheme that possesses the above property. Obviously the development of such a
scheme must be preceded by that of a nondissipative scheme such as thea scheme.

The problem of physical dissipation being overwhelmed by numerical dissipation does
not exist for a pure convection problem. However, as explained in the earlier discussion about
the delicate nature of simulating small disturbances in the presence of shocks, numerical
dissipation must still be handled carefully in this case. For this reason, thea-ε scheme
[2] was built from thea scheme so that the numerical dissipation of its solutions can be
controlled by the parameterε. Again thea-ε scheme reduces to thea scheme whenε= 0.

Note that numerical dissipation traditionally is adjusted by varying the magnitude of
added artificial dissipation terms. However, after being stripped of these added artificial
dissipation terms, almost every traditional scheme is still not free from inherent numerical
dissipation. Hence, numerical dissipation generally cannot be avoided completely using the
traditional approach.

Finally, note that a thorough discussion about the key differences between the CE/SE
method and other established methods is given in Section 1 of [7].
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2. GEOMETRICAL DESCRIPTION OF CONSERVATION ELEMENTS

IN TWO SPATIAL DIMENSIONS

In [2, 7], it was established that, for each 1D CE/SE solver, there were 2M independent
marching variables per mesh point withM being the number of conservation laws to be
solved. BecauseM conservation conditions are imposed over each conservation element
(CE), two CEs were introduced at each mesh point such that both the 1Da scheme and
the 1D Eulera scheme [7] can be constructed by solving the 2M conservation conditions
imposed at each mesh point( j, n), for the 2M variables associated with the mesh point.

As will be shown in the following sections, for each 2D CE/SE solver, there are 3M
independent marching variables per mesh point. As a result, three CEs need to be defined
at each mesh point. In this section, only the basic geometric structures of these CEs will be
described.

Consider a spatial domain formed by congruent triangles (see Fig. 4). The center of each
triangle is marked by either a hollow circle or a solid circle. The distribution of these hollow
and solid circles is such that if the center of a triangle is marked by a solid (hollow) circle,
then the centers of the three neighboring triangles with which the first triangle shares its three
sides are marked by hollow (solid) circles. As an example, pointG, the center of the triangle
4B DF, is marked by a solid circle while pointsA, C, andE, the centers of the triangles
4F M B, 4B J D, and4DL F , respectively, are marked by hollow circles. These centers
are the spatial projections of the space–time mesh points used in the 2D CE/SE solvers.

To specify the exact locations of the mesh points in space-time, one must also specify
their temporal coordinates. In the 2D CE/SE development, again we assume that the mesh
points are located at the time levelsn= 0,±1/2,±1,±3/2, . . . , with t = n1t at thenth
time level. Furthermore, we assume that the spatial projections of the mesh points at a

FIG. 4. A spatial domain formed from congruent triangles, showing the spatial projections of the mesh points.
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FIG. 5. (a) The CEs associated withG′, (b) the CEs associated withC′′, and (c) the relative positions of the
CEs of successive time steps.

whole-integer (half-integer) time level are the points marked by hollow (solid) circles in
Fig. 4.

Let the triangles depicted in Fig. 4 lie on the time leveln= 0. Then those points marked
by hollow circles are the mesh points at this time level. On the other hand, those points
marked by solid circles are not the mesh points at the time leveln= 0. They are the spatial
projections of the mesh points at half-integer time levels.

PointsA, C, andE, which are depicted in Figs. 4 and 5a, are three mesh points at the
time leveln= 0. PointG′, which is depicted in Fig. 5a, is a mesh point at the time level
n= 1/2. Its spatial projection at the time leveln= 0 is pointG. Because pointG is not a
mesh point, it is not marked by a circle in the space-time plots given in Figs. 5a and 5c.
Hereafter, only a mesh point, e.g., pointG′, will be marked by a solid or hollow circle in a
space–time plot.

The CEs associated with a mesh point at a half-integer time level, such as pointG′, are
defined to be the space–time quadrilateral cylindersGF ABG′F ′A′B′, G BC DG′B′C′D′,
andG DE FG′D′E′F ′. Similarly, the CEs associated with a mesh point at a whole-integer
time-level, such as pointC′′, are the quadrilateral cylindersC′J ′K ′D′C′′J ′′K ′′D′′,
C′D′G′B′C′′D′′G′′B′′, andC′B′ I ′J ′C′′B′′ I ′′J ′′ (see Fig. 5b). The relative space-time po-
sitions of the six CEs associated with mesh pointsG′ andC′′ are depicted in Fig. 5c.

Note that (i) pointsA,C, E, andG are the geometric centers of four neighboring congruent
triangles4F M B,4B J D,4DL F , and4B DF, respectively; and (ii) among those depicted
in Fig. 4, any pair of triangles sharing a common side forms a parallelogram. As a result,
one concludes that

(a) C D, GE, BG, andAF are parallel line segments of equal length.
(b) AB, GC, FG, andE D are parallel line segments of equal length.
(c) BC, G D, AG, andF E are parallel line segments of equal length.
(d) PointG is the geometric center of the hexagonABC DE Fand the triangleAC E.
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Finally note that, because the hexagonBI J K DG (depicted in Fig. 4) is congruent to the
hexagonABC DE F, a set of geometric relations similar to those listed above also exists
for the vertices and the center of the hexagonBI J K DG.

3. THE 2D a SCHEME

In this section, we consider a dimensionless form of the 2D convection equation, i.e.,

∂u

∂t
+ ax

∂u

∂x
+ ay

∂u

∂y
= 0, (3.1)

whereax anday are constants. Letx1= x, x2= y, andx3= t be the coordinates of a three-
dimensional Euclidean spaceE3. By using Gauss’ divergence theorem in the space-time
E3, it can be shown that Eq. (3.1) is the differential form of the integral conservation law∮

S(V)
h · ds= 0. (3.2)

Here, (i)S(V) is the boundary of an arbitrary space-time regionV in E3, (ii)

h def= (axu,ayu, u) (3.3)

is a current density vector inE3, and (iii) ds= dσ n with dσ andn, respectively, being
the area and the outward unit normal of a surface element onS(V). Note that (i)h · ds is
the space-time flux ofh leaving the regionV through the surface elementds, and (ii) all
mathematical operations can be carried out as thoughE3 were an ordinary three-dimensional
Euclidean space.

In the following analysis, the nontraditional space-time mesh that was sketched in
Section 2 will be rigorously defined. To proceed, the spatial projections of the mesh points
depicted in Fig. 4 are reproduced in Fig. 6. Note that the dashed lines that appear in Fig. 6
are the spatial projections of the vertical interfaces (see Figs. 5a–c) that separate different
CEs. Also note that, as a result of the geometric relations listed at the end of Section 2, any

FIG. 6. The relative spatial positions of the mesh points∈ Ä1 and the mesh points∈ Ä2 (dashed lines are
spatial boundaries of the conservation elements depicted in Figs. 9a and 10a).
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FIG. 7. The spatial mesh indices (j, k) of the mesh points∈ Ä1(n=±1/2,±3/2,±5/2, · · ·).

dashed line can point only in one of three different fixed directions. We assume that the
congruent triangles depicted in Fig. 4 are aligned such that one of the above fixed directions
is thex-direction.

Each mesh point marked by a solid or hollow circle is assigned a pair of spatial indices
( j, k) according to the location of its spatial projection. Obviously, a mesh point can be
uniquely identified by its spatial indices( j, k) and the time leveln where it resides. Ac-
cording to Figs. 7 and 8, the spatial projections of the mesh points that share the same value
of j (k) lie on a straight line on thex–y plane with this straight line pointing in the direction
of thek- ( j -) mesh axis.

FIG. 8. The spatial mesh indices (j, k) of the mesh points∈ Ä2(n= 0,±1,±2, · · ·).
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FIG. 9. (a) Conservation elementsCEr ( j, k, n), r = 1, 2, 3, for any (j, k, n) ∈ Ä1. (b) Solution element
SE( j, k, n) for any (j, k, n)∈Ä1.

Let

tn def= n1t, n = 0,±1/2,±1,±3/2, . . .. (3.4)

Let j andk be spatial mesh indices withj, k= 0,±1/3,±2/3,±1, . . .. LetÄ1 denote the set
of mesh points( j, k, n)with j, k= 0,±1,±2, . . . , andn=±1/2,±3/2,±5/2, . . .. These
mesh points are marked by solid circles. LetÄ2 denote the set of mesh points( j, k, n) with
j, k= 1/3, 1/3± 1, 1/3± 2, . . . , andn= 0,±1,±2, . . .. These mesh points are marked
by hollow circles. The union ofÄ1 andÄ2 will be denoted byÄ.

Each mesh point( j, k, n)∈Ä is associated with (i) three conservation elements, denoted
by CEr ( j, k, n), r = 1, 2, 3 (see Figs. 9a and 10a); and (ii) a solution element, denoted by
SE( j, k, n) (see Figs. 9b and 10b). Note that (i)E3 can be filled with the CEs defined
above; (ii) the boundary of a CE is formed by the subsets of two neighboring SEs; and
(iii) the CEs and the SE associated with a mesh point( j, k, n)∈Ä1 differ from those
associated with a mesh point( j, k, n)∈Ä2 in their space-time orientations.

By using the geometric relations listed at the end of Section 2, one can conclude that the
spatial coordinates of the vertices of the hexagonABC DE F, which appears in both Figs. 9a
and 10a, are uniquely determined by three positive parametersw, b, andh (see Fig. 11a)
if (i) one assumes thatD A is aligned with thex-direction and (ii) the spatial coordinates
of point G (the centroid of the hexagon) are given. Note thatw, b, andh, respectively, are
the lengths of the line segmentsDM , M H , andB H with (i) DM being a median of the
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FIG. 10. (a) Conservation elementsCEr ( j, k, n), r = 1, 2, 3, for any (j, k, n)∈Ä2. (b) Solution element
SE( j, k, n) for any (j, k, n)∈Ä2.

triangle4B DF and (ii) pointsG, M , andH being on the line segmentD A. Also note that
a dashed line in Fig. 6 may appear in other figures as a solid line.

Let the space-time mesh be uniform, i.e., the parameters1t , w, b, andh are constants.
Let xj,k andyj,k be thex- andy-coordinates of any mesh points( j, k, n)∈Ä. Let x0,0= 0
andy0,0= 0. Then information provided by Figs. 11a and 11b implies that

xj,k = ( j + k)w + (k− j )b, yj,k = (k− j )h. (3.5)

For any(x, y, t)∈ SE( j, k, n), u(x, y, t) andh(x, y, t), respectively, are approximated by

u∗(x, y, t; j, k, n)
def= un

j,k + (ux)
n
j,k(x − xj,k)+ (uy)

n
j,k(y− yj,k)+ (ut )

n
j,k(t − tn) (3.6)

and

h∗(x, y, t; j, k, n)
def= [axu∗(x, y, t; j, k, n),ayu∗(x, y, t; j, k, n), u∗(x, y, t; j, k, n)],

(3.7)

whereun
j,k, (ux)

n
j,k, (uy)

n
j,k, and(ut )

n
j,k are constants within SE( j, k, n). Note that Eq. (3.7)

is the numerical analogue of Eq. (3.3).
u= u∗(x, y, t; j, k, n) is required to satisfy Eq. (3.1) within SE( j, k, n). Thus,

(ut )
n
j,k = −

[
ax(ux)

n
j,k + ay(uy)

n
j,k

]
. (3.8)
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FIG. 11. Geometry of the hexagonABC DE F. (a) Relative positions of the vertices in terms of (x, y).
(b) Relative positions of the vertices in terms of (j, k). (c) Relative positions of the vertices in terms of(ζ, η).

Equations (3.6) and (3.8) imply that

u∗(x, y, t; j, k, n) = un
j,k + (ux)

n
j,k

[
(x − xj,k)− ax(t − tn)

]
+ (uy)

n
j,k

[
(y− yj,k)− ay(t − tn)

]
. (3.9)

Thus, there are three independent marching variables, i.e.,un
j,k, (ux)

n
j,k, and (uy)

n
j,k as-

sociated with a mesh point( j, k, n)∈Ä. For any( j, k, n)∈Ä1, these variables will be
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FIG. 12. (a) The mesh points (j, k, n), ( j + 1/3, k+ 1/3, n− 1/2), ( j − 2/3, k+ 1/3, n− 1/2) and ( j +
1/3, k− 2/3, n− 1/2) that belong toÄ1. (b) The mesh points( j, k, n), ( j − 1/3, k− 1/3, n− 1/2), ( j + 2/3, k−
1/3, n− 1/2), and( j − 1/3, k+ 2/3, n− 1/2) that belong toÄ2.

determined in terms of those associated with the mesh points( j + 1/3, k+ 1/3, n− 1/2),
( j − 2/3, k+ 1/3, n− 1/2), and( j + 1/3, k− 2/3, n− 1/2) (see Fig. 12a) by using the
three flux conservation relations∮

S(CEr ( j,k,n))
h∗ · ds= 0, r = 1, 2, 3. (3.10)

Similarly, the marching variables at any( j, k, n)∈Ä2 are determined in terms of those
associated with the mesh points( j − 1/3, k− 1/3, n− 1/2), ( j + 2/3, k− 1/3, n− 1/2),
and( j − 1/3, k+ 2/3, n− 1/2) (see Fig. 12b) by using the three flux conservation relations
Eq. (3.10). Obviously, Eq. (3.10) is the numerical analogue of Eq. (3.2).

As a result of Eq. (3.10), the total flux leaving the boundary of any CE is zero. Because
the flux at any interface separating two neighboring CEs is calculated using the information
from a single SE, the flux entering one of these CEs is equal to that leaving another. It
follows that the local conservation conditions Eq. (3.10) will lead to a global conservation
condition, i.e., the total flux leaving the boundary of any space-time region that is the union
of any combination of CEs will also vanish.

In the following, several preliminaries will be given prior to the evaluation of Eq. (3.10).
To proceed, note that a mesh line withj andn being constant or a mesh line withk andn
being constant is not aligned with thex-axis or they-axis. We shall introduce a new spatial
coordinate system(ζ, η) with its axes aligned with the above mesh lines (see Fig. 11c).

Let ex andey be the unit vectors in thex- and they-directions, respectively. Leteζ and
eη be the unit vectors in the directions of DF

→
and DB
→

(i.e., the j - and thek-directions—see
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Figs. 11a–11c), respectively. Let the origin of(x, y) also be that of(ζ, η). Then, at any
point in E3, the coordinates(ζ, η) are defined in terms of(x, y) using the relation

ζeζ + ηeη = xex + yey. (3.11)

Using the above definition, it can be shown that [7](
x
y

)
= T

(
ζ

η

)
, and

(
ζ

η

)
= T−1

(
x
y

)
(3.12)

with

T
def=
 w− b

1ζ
w+ b
1η

− h
1ζ

h
1η

, and T−1 def=
 1ζ

2w − (w+ b)1ζ
2wh

1η

2w
(w− b)1η

2wh

 . (3.13)

Here,

1ζ
def= |DF | =

√
(w − b)2+ h2, and 1η

def= |DB| =
√
(w + b)2+ h2. (3.14)

With the aid of Eqs. (3.5), (3.12), and (3.13), it can be shown that the coordinates(ζ, η)

of any mesh point( j, k, n)∈Ä are given by

ζ = j1ζ, and η = k1η; (3.15)

i.e.,1ζ and1η are the mesh intervals in theζ - and theη-directions, respectively.
Next we shall introduce several coefficients that are tied to the coordinate system(ζ, η).

Let (
aζ
aη

)
def= T−1

(
ax

ay

)
. (3.16)

Also, for any( j, k, n)∈Ä, let(
(uζ )nj,k

(uη)nj,k

)
def= Tt

(
(ux)

n
j,k

(uy)
n
j,k

)
, (3.17)

whereTt is the transpose ofT . Equations (3.8), (3.9), (3.12), (3.13), (3.16), and (3.17)
imply that

(ut )
n
j,k = −

[
aζ (uζ )

n
j,k + aη(uη)

n
j,k

]
(3.18)

and

u∗(x, y, t; j, k, n) = u?(ζ, η, t; j, k, n), (3.19)

where

u?(ζ, η, t; j, k, n)
def= un

j,k + (uζ )nj,k
[
(ζ − j1ζ)− aζ (t − tn)

]
+ (uη)nj,k

[
(η − k1η)− aη(t − tn)

]
. (3.20)

Next, let (i)

νζ
def= 31t

21ζ
aζ , and νη

def= 31t

21η
aη (3.21)
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and (ii)

(u+ζ )
n
j,k

def= 1ζ
6
(uζ )

n
j,k, and (u+η )

n
j,k

def= 1η
6
(uη)

n
j,k. (3.22)

The coefficients defined in Eqs. (3.21) and (3.22) can be considered as the normalized
counterparts of those defined in Eqs. (3.16) and (3.17). Furthermore, because1ζ and1η are
the mesh intervals in theζ - andη-directions, respectively, Eq. (3.21) implies that(2/3)νζ
and (2/3)νη, respectively, are equal to the Courant numbers in theζ - andη-directions,
respectively.

Furthermore, to simplify the following development, let

( j, k; 1, 1) def= j + 1/3, k+ 1/3, ( j, k; 2, 1) def= j − 1/3, k− 1/3 (3.23)

( j, k; 1, 2) def= j − 2/3, k+ 1/3, ( j, k; 2, 2) def= j + 2/3, k− 1/3 (3.24)

( j, k; 1, 3) def= j + 1/3, k− 2/3, ( j, k; 2, 3) def= j − 1/3, k+ 2/3. (3.25)

Note that (i)( j, k; 1, r ), r = 1, 2, 3, are the spatial mesh indices of pointsA, C, and E
depicted in Fig. 9a, respectively, and (ii)( j, k; 2, r ), r = 1, 2, 3, are the spatial mesh indices
of pointsD, F , andB depicted in Fig. 10a, respectively.

Equation (3.10) is evaluated in Appendix B of [7]. The evaluation is facilitated by the
following observations: (i) the boundary of each CE is formed by six quadrilaterals inE3

with each quadrilateral belonging to a single SE (see Figs. 9 and 10); and (ii) because
u∗(x, y, t; j, k, n) is linear inx, y, andt (see Eqs. (3.9)), Eq. (3.7) implies that, for any
r = 1, 2, 3, the total flux ofh∗ leaving CEr ( j, k, n) through any one of its six boundary
quadrilaterals is equal to the scalar product of the vectorh∗ evaluated at the centroid of the
quadrilateral and the surface vector (i.e., the unit normal multiplied by the surface area) of
the quadrilateral. Let( j, k, n)∈Äq with q= 1, 2. Then, for anyr = 1, 2, 3, the result of
evaluation can be expressed as[

σ
(q)+
r 1 u+ σ (q)+r 2 u+ζ + σ (q)+r 3 u+η

]n
j,k =

[
σ
(q)−
r 1 u+ σ (q)−r 2 u+ζ + σ (q)−r 3 u+η

]n−1/2
( j,k;q,r ), (3.26)

where the coefficientsσ (q)±rs (q= 1, 2 andr, s= 1, 2, 3) are defined by

σ
(1)±
11

def= 1− νζ − νη, σ
(2)±
11

def= 1+ νζ + νη (3.27)

σ
(1)±
12

def=±(1− νζ − νη)(1+ νζ ), σ
(2)±
12

def=∓(1+ νζ + νη)(1− νζ ) (3.28)

σ
(1)±
13

def=±(1− νζ − νη)(1+ νη), σ
(2)±
13

def=∓(1+ νζ + νη)(1− νη) (3.29)

σ
(1)±
21

def= 1+ νζ , σ
(2)±
21

def= 1− νζ (3.30)

σ
(1)±
22

def=∓(1+ νζ )(2− νζ ), σ
(2)±
22

def=±(1− νζ )(2+ νζ ) (3.31)

σ
(1)±
23

def=±(1+ νζ )(1+ νη), σ
(2)±
23

def=∓(1− νζ )(1− νη) (3.32)

σ
(1)±
31

def= 1+ νη, σ
(2)±
31

def= 1− νη (3.33)

σ
(1)±
32

def=±(1+ νη)(1+ νζ ), σ
(2)±
32

def=∓(1− νη)(1− νζ ) (3.34)

and

σ
(1)±
33

def=∓(1+ νη)(2− νη), σ
(2)±
33

def=±(1− νη)(2+ νη). (3.35)



106 CHANG, WANG, AND CHOW

Note that, to simplify notation, in Eq. (3.26) and hereafter we adopt a convention that can
be explained using the expression on the left side of Eq. (3.26) as an example; i.e.,[

σ
(q)+
r 1 u+ σ (q)+r 2 u+ζ + σ (q)+r 3 u+η

]n
j,k = σ

(q)+
r 1 un

j,k + σ (q)+r 2 (u+ζ )
n
j,k + σ (q)+r 3 (u+η )

n
j,k.

Let (i) 1−νζ −νη 6= 0, (ii) 1+νζ 6= 0, (iii) 1+νη 6= 0, (iv) 1+νζ + νη 6= 0, (v) 1−νζ 6= 0,
and (vi) 1− νη 6= 0, i.e., [

1− (νζ + νη)2
](

1− ν2
ζ

)(
1− ν2

η

) 6= 0, (3.36)

then the six equations (q= 1, 2 andr = 1, 2, 3) given in Eq. (3.26) can be simplified as

[u+ (1+ νζ )u+ζ + (1+ νη)u+η ]n
j,k = s(1)1 , ( j, k, n) ∈ Ä1 (3.37)

[u− (2− νζ )u+ζ + (1+ νη)u+η ]n
j,k = s(1)2 , ( j, k, n) ∈ Ä1 (3.38)

[u+ (1+ νζ )u+ζ − (2− νη)u+η ]n
j,k = s(1)3 , ( j, k, n) ∈ Ä1 (3.39)

[u− (1− νζ )u+ζ − (1− νη)u+η ]n
j,k = s(2)1 , ( j, k, n) ∈ Ä2 (3.40)

[u+ (2+ νζ )u+ζ − (1− νη)u+η ]n
j,k = s(2)2 , ( j, k, n) ∈ Ä2 (3.41)

and

[u− (1− νζ )u+ζ + (2+ νη)u+η ]n
j,k = s(2)3 , ( j, k, n) ∈ Ä2, (3.42)

respectively. Here

s(1)1
def= [u− (1+ νζ )u+ζ − (1+ νη)u+η ]n−1/2

( j,k;1,1), ( j, k, n) ∈ Ä1 (3.43)

s(1)2
def= [u+ (2− νζ )u+ζ − (1+ νη)u+η ]n−1/2

( j,k;1,2), ( j, k, n) ∈ Ä1 (3.44)

s(1)3
def= [u− (1+ νζ )u+ζ + (2− νη)u+η ]n−1/2

( j,k;1,3), ( j, k, n) ∈ Ä1 (3.45)

s(2)1
def= [u+ (1− νζ )u+ζ + (1− νη)u+η ]n−1/2

( j,k;2,1), ( j, k, n) ∈ Ä2 (3.46)

s(2)2
def= [u− (2+ νζ )u+ζ + (1− νη)u+η ]n−1/2

( j,k;2,2), ( j, k, n) ∈ Ä2 (3.47)

and

s(2)3
def= [u+ (1− νζ )u+ζ − (2+ νη)u+η ]n−1/2

( j,k;2,3), ( j, k, n) ∈ Ä2. (3.48)

The current 2Da scheme will be constructed using Eqs. (3.37)–(3.42) without assuming
Eq. (3.36). Note that Eqs. (3.37)–(3.42) imply Eq. (3.26) for anyνζ andνη. However, the
reverse is false unless Eq. (3.36) is assumed.

For eitherq= 1 or q= 2, by summing over the three equationsr = 1, 2, 3 given in
Eq. (3.26) and using the properties

σ
(q)±
11 + σ (q)±21 + σ (q)±31 = 3, q = 1, 2 (3.49)

and

σ
(q)±
12 + σ (q)±22 + σ (q)±32 = σ (q)±13 + σ (q)±23 + σ (q)±33 = 0, q = 1, 2 (3.50)
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one concludes that, for any( j, k, n) ∈ Äq,

un
j,k =

1

3

3∑
r=1

[
σ
(q)−
r 1 u+ σ (q)−r 2 u+ζ + σ (q)−r 3 u+η

]n−1/2
( j,k;q,r ), q = 1, 2. (3.51)

Also, it follows from Eqs. (3.37)–(3.42) that, for any( j, k, n)∈Äq,

(u+ζ )
n
j,k =

(
ua+
ζ

)n

j,k and
(
u+η
)n

j,k =
(
uq+
η

)n

j,k, (3.52)

where(
ua+
ζ

)n

j,k
def= (−1)q

3

(
s(q)2 − s(q)1

)
and

(
ua+
η

)n

j,k
def= (−1)q

3

(
s(q)3 − s(q)1

)
. (3.53)

Note that Eqs. (3.37)–(3.42) are equivalent to Eqs. (3.51) and (3.52).
The 2Da scheme is formed using Eqs. (3.51) and (3.52). It has been shown numerically

that it is second order in accuracy forun
j,k, (uζ )nj,k and(uη)nj,k assuming thatνζ andνη are

held constant in the process of mesh refinement (note: as a result of Eq. (3.22), the 2Da
scheme is third order accuracy in(u+ζ )

n
j,k and(u+η )

n
j,k). Note that the superscript symbol “a”

in (ua+
ζ )

n
j,k and(ua+

η )
n
j,k is introduced to remind the reader that Eq. (3.52) is valid for the

2D a scheme.
The 2Da scheme shares with the 1Da scheme several nontraditional features. They are

summarized in the following comments:

(a) As in the case of the 1Da scheme, the 2Da scheme also has the simplest stencil
possible, i.e., a tetrahedron in 3D space-time with one vertex at the upper time level and the
other three vertices at the lower time level.

(b) As in the case of the 1Da scheme, each of the six flux conservation conditions
associated with the 2Da scheme, i.e., those given in Eq. (3.26), represents a relation among
the marching variables associated with only two neighboring SEs.

(c) As in the case of the 1Da scheme, the 2Da scheme also is nondissipative if it is
stable. It is shown in Section 7 of [7] that the 2Da scheme is neutrally stable if

|νζ | < 1.5, |νη| < 1.5, and |νζ + νη| < 1.5. (3.54)

As depicted in Fig. 13, the domain of stability defined by Eq. (3.54) is a hexagonal region
in theνζ -νη plane.

(d) It is shown in [10] that the 2Da scheme has the following property: i.e., for any
( j, k, n)∈Ä,

q( j, k, n+ 1)→ q( j, k, n) as1t → 0 (3.55)

if ax, ay,w, b, andh are held constant. Hereq( j, k, n) is the column matrix formed by the
three marching variables at the mesh point( j, k, n) [7]. The 1Da scheme also possesses
a similar property, i.e., Eq. (2.19) in [2]. The above property usually is not shared by other
schemes that use a mesh that is staggered in time, e.g., the Lax scheme [30, p. 74].

(e) As in the case of the 1Da scheme, the 2Da scheme is also a two-way marching
scheme; i.e., Eqs. (3.37)–(3.42) can also be used to construct the backward time-marching
version of the 2Da scheme [10].
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FIG. 13. The stability domain of the 2Da scheme.

Note that the 2Da scheme can also be expressed in terms of the marching variables and
the coefficients tied to the coordinates(x, y). Here the coordinates(ζ, η) are introduced
solely for the purpose of simplifying the current development (note: as an example, the proof
given in Appendix D of [7] that Eq. (3.54) can be interpreted as the requirement that the
physical domain of dependence of Eq. (3.1) be within the numerical domain of dependence
would not be so simple if the coordinates(ζ, η) were not introduced). The essence of the
2D a scheme, and the schemes to be introduced in the following sections, is not dependent
on the choice of the coordinates in terms of which of these schemes are expressed.

4. THE 2D a-ε SCHEME

In this section, the nondissipative 2Da scheme will be extended to become the dissipative
2D a-ε scheme.

To proceed, note that the CEs for the 2Da-ε scheme generally are not those associated
with the 2Da scheme. Here only a single CE is associated with a mesh point( j, k, n)∈Ä.
This CE, denoted by CE( j, k, n), is the union of CEr ( j, k, n), r = 1, 2, 3. In other words,

CE( j, k, n)
def= [CE1( j, k, n)] ∪ [CE2( j, k, n)] ∪ [CE3( j, k, n)]. (4.1)

Instead of Eq. (3.10), here we assume the less stringent conservation condition

∮
S(CE( j,k,n))

h∗ · ds= 0. (4.2)

Obviously, (i)E3 can be filled with the new CEs, and (ii) the total flux leaving the boundary
of any space-time region that is the union of any new CEs will also vanish.

Moreover, because of Eq. (4.1), Eq. (4.2) must be true if Eq. (3.10) is assumed. As a
matter of fact, a direct evaluation of Eq. (4.2) reveals that it is equivalent to Eq. (3.51). As
a result, Eq. (3.51) is shared by the 2Da scheme and 2Da-ε scheme. In this section, the
2D a-ε scheme will be constructed by modifying Eq. (3.52), the second equation in thea
scheme. As a prerequisite, we shall first construct certain central-difference analogues of
∂u/∂ζ and∂u/∂η.
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To proceed, for any( j, k, n)∈Äq, q= 1, 2, let

u′ n( j,k;q,r )
def=
(

u+ 1t

2
ut

)n−1/2

( j,k;q,r )
, r = 1, 2, 3. (4.3)

By its definition,u′ n( j,k;q,r ) is a Taylor series estimate ofu at(( j, k;q, r ), n). With the aid of
Eqs. (3.18), (3.21), and (3.22), Eq. (4.3) implies that

u′ n( j,k;q,r ) = [u− 2(νζu
+
ζ + νηu+η )]n−1/2

( j,k;q,r ). (4.4)

For bothq= 1 andq= 2, let P, Q, andRbe the three points in theζ -η-u space with their
(i) ζ - andη-coordinates being those of the mesh points(( j, k;q, r ), n− 1/2), r = 1, 2, 3,
respectively, and (ii) theiru-coordinates beingu′ n( j,k;q,r ), r = 1, 2, 3, respectively. It can be
shown that [7], at any point on the plane containing pointsP, Q, andR, we have(

∂u

∂ζ

)
η

= (uc
ζ

)n

j,k, and

(
∂u

∂η

)
ζ

= (uc
η

)n

j,k. (4.5)

Here (
uc
ζ

)n

j,k
def= (−1)q

(
u′ n( j,k;q,2) − u′ n( j,k;q,1)

)/
1ζ (4.6)

and (
uc
η

)n

j,k
def= (−1)q

(
u′ n( j,k;q,3) − u′ n( j,k;q,1)

)/
1η. (4.7)

As a result of the above considerations, and the fact that the spatial projection of the mesh
point( j, k, n)∈Äq on the(n−1/2)th time level is the centroid of the triangle formed with
the mesh points(( j, k;q, r ), n − 1/2), r = 1, 2, 3, one concludes that(uc

ζ )
n
j,k and(uc

η)
n
j,k

are central-difference approximations of∂u/∂ζ and∂u/∂η, respectively, at the mesh point
( j, k, n).

To proceed, for any( j, k, n)∈Ä, let

(
uc+
ζ

)n

j,k
def= 1ζ

6

(
uc
ζ

)n

j,k and
(
uc+
η

)n

j,k
def= 1η

6

(
uc
η

)n

j,k. (4.8)

Then the 2Da-ε scheme is formed by Eq. (3.51) and

(u+ζ )
n
j,k =

(
ua+
ζ

)n

j,k + 2ε
(
uc+
ζ − ua+

ζ

)n

j,k (4.9)

and

(u+η )
n
j,k =

(
ua+
η

)n

j,k + 2ε
(
uc+
η − ua+

η

)n

j,k, (4.10)

whereε is an adjustable parameter.
Note that the expression on the right side of Eq. (4.9) contains two parts. The first part is

the nondissipative term(ua+
ζ )

n
j,k (recall that the 2Da scheme is nondissipative). The second

part is the product of 2ε and the difference between the dissipative central difference term
(uc+
ζ )

n
j,k and the nondissipative term(ua+

ζ )
n
j,k. Numerical dissipation is introduced by the
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second part. The expression on the right side of Eq. (4.10) can also be interpreted similarly.
Thus, numerical dissipation of the 2Da-ε scheme can be adjusted upward by increasing
the value ofε.

Note that because the 2Da-ε scheme does not reduce to the 2Da scheme except in
the special caseε= 0, at each mesh point( j, k, n)∈Ä, generally the 2Da-ε satisfies only
the single conservation condition Eq. (4.2) rather than the three conservation conditions
Eq. (3.10). However, because(ua+

ζ )
n
j,k and(ua+

η )
n
j,k generally are present on the right sides

of Eqs. (4.9) and (4.10), respectively, the 2Da-ε scheme generally will still be burdened
with the cost of solving three conservation conditions at each mesh point. The excep-
tion occurs only for the special caseε= 1/2 under which Eqs. (4.9) and (4.10) reduce to
(u+ζ )

n
j,k= (uc+

ζ )
n
j,k and(u+η )

n
j,k= (uc+

η )
n
j,k, respectively.

This section is concluded with the following remarks:

(a) The stability domain of the 2Da-ε scheme on theνζ -νη plane is essentially that
depicted in Fig. 13 if 0≤ ε≤ 1 [7].

(b) It is explained in [7] that the 2Da-ε scheme withε >0 is second order in accuracy
for un

j,k and first order in accuracy for(uζ )nj,k and(uη)nj,k, assuming thatνζ , νη, andε are
held constant in the process of mesh refinement.

(c) A more advanced scheme, referred to as the 2Da-ε-α-β scheme, is described in
[7]. This scheme is constructed by using a procedure similar to that used to construct the
2D Eulera-ε-α-β scheme which will be described in Section 5.

5. THE EULER SOLVERS

We consider a dimensionless form of the 2D unsteady Euler equations of a perfect gas.
Let ρ, u, v, p, andγ be the mass density,x-velocity component,y-velocity component,
static pressure, and constant specific heat ratio, respectively. Let

u1 = ρ, u2 = ρu, u3 = ρv, u4 = p/(γ − 1)+ ρ(u2+ v2)/2 (5.1)

f x
1 = u2, f y

1 = u3, f x
3 = f y

2 = u2u3/u1 (5.2)

f x
2 = (γ − 1)u4+ (3− γ )(u2)

2/(2u1)− (γ − 1)(u3)
2/(2u1) (5.3)

f x
4 = γu2u4/u1− (1/2)(γ − 1)u2

[
(u2)

2+ (u3)
2
]/
(u1)

2 (5.4)

f y
3 = (γ − 1)u4+ (3− γ )(u3)

2/(2u1)− (γ − 1)(u2)
2/(2u1) (5.5)

and

f y
4 = γu3u4/u1− (1/2)(γ − 1)u3

[
(u2)

2+ (u3)
2
]/
(u1)

2. (5.6)

Then the Euler equations can be expressed as

∂um

∂t
+ ∂ f x

m

∂x
+ ∂ f y

m

∂y
= 0, m= 1, 2, 3, 4. (5.7)

Assuming smoothness of the physical solution, Eq. (5.7) is a result of the more fundamental
conservation laws ∮

S(V)
hm · ds= 0, m= 1, 2, 3, 4, (5.8)
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where

hm =
(

f x
m, f y

m, um
)
, m= 1, 2, 3, 4 (5.9)

are the space-time mass,x-momentum component,y-momentum component, and energy
current density vectors, respectively.

As a preliminary, let

f x
m,`

def= ∂ f x
m

/
∂u`, and f y

m,`
def= ∂ f y

m

/
∂u`, m, ` = 1, 2, 3, 4. (5.10)

The Jacobian matrices, which are formed byf x
m,` and f y

m,`,m, `= 1, 2, 3, 4, respectively,
are given in [10].

Becausef x
m and f y

m,m= 1, 2, 3, 4, are homogeneous functions of degree 1 [31, p. 11] in
u1, u2, u3, andu4, we have

f x
m =

4∑
`=1

f x
m,`u`, and f y

m =
4∑
`=1

f y
m,` u`. (5.11)

Note that Eq. (5.11) is not essential in the development of the CE/SE Euler solvers to be
described in the following subsections. However, in certain instances, it will be used to
recast some equations into more convenient forms.

Before proceeding, note that Section 2 of [7] is devoted to (i) reviewing and reformulating
the 1D schemes described in [2] and (ii) filling a gap in the derivation of Eq. (4.28) in [2]. Not
only does the reformulation enable the reader to see more clearly the structural similarity
between the 1D solvers of Eq. (1.1) withµ= 0 and their Euler counterparts, it also makes
it easier for the reader to appreciate the consistency between the construction of the 1D
CE/SE Euler solvers and that of the 2D Euler solvers to be described immediately.

5.1. The 2D Euler a Scheme

For any(x, y, t)∈SE( j, k, n), um(x, y, t), f x
m(x, y, t), f y

m(x, y, t), andhm(x, y, t), resp-
ectively, are approximated byu∗m(x, y, t; j, k, n), f x∗

m (x, y, t; j, k, n), f y∗
m (x, y, t; j, k, n),

andh∗m(x, y, t; j, k, n). They will be defined shortly. Let

u∗m(x, y, t; j, k, n)
def= (um)

n
j,k + (umx)

n
j,k(x − xj,k)+ (umy)

n
j,k(y− yj,k)

+ (umt)
n
j,k(t − tn), m= 1, 2, 3, 4, (5.12)

where(um)
n
j,k, (umx)

n
j,k, (umy)

n
j,k, and(umt)

n
j,k are constants in SE( j, k, n).

Let ( f x
m)

n
j,k, ( f y

m)
n
j,k, ( f x

m,`)
n
j,k, and ( f y

m,`)
n
j,k denote the values off x

m, f y
m, f x

m,`, and
f y
m,`, respectively; whenum,m= 1, 2, 3, 4, respectively, assume the values of(um)

n
j,k,

m= 1, 2, 3, 4. For anym= 1, 2, 3, 4, let

(
f x
mx

)n

j,k
def=

4∑
`=1

(
f x
m,`

)n

j,k(u`x)
n
j,k. (5.13)

Similarly ( f x
my)

n
j,k, ( f x

mt)
n
j,k, ( f y

mx)
n
j,k, ( f y

my)
n
j,k, and( f y

mt)
n
j,k are defined by replacing (i) both

superscriptsx in Eq. (5.13) withx or y and (ii) both subscriptsx in Eq. (5.13) withx, y, or t .



112 CHANG, WANG, AND CHOW

Because (i)

∂ f x
m

∂x
=

4∑
`=1

f x
m,`

∂u`
∂x
, m= 1, 2, 3, 4 (5.14)

and (ii) the expression on the right side of Eq. (5.13) is the numerical analogue of that on
the right side of Eq. (5.14) at(xj,k, yj,k, tn), ( f x

mx)
n
j,k will be interpreted as the numerical

analogue of the value of∂ f x
m/∂x at(xj,k, yj,k, tn). Similar interpretations will also be given

to ( f x
my)

n
j,k, ( f x

mt)
n
j,k, ( f y

mx)
n
j,k, ( f y

my)
n
j,k, and( f y

mt)
n
j,k. As a result, we define

f x∗
m (x, y, t; j, k, n)

def= ( f x
m

)n

j,k +
(

f x
mx

)n

j,k(x − xj,k)+
(

f x
my

)n

j,k(y− yj,k)

+ ( f x
mt

)n

j,k(t − tn), m= 1, 2, 3, 4 (5.15)

and

f y∗
m (x, y, t; j, k, n)

def= ( f y
m

)n

j,k +
(

f y
mx

)n

j,k(x − xj,k)+
(

f y
my

)n

j,k(y− yj,k)

+ ( f y
mt

)n

j,k(t − tn), m= 1, 2, 3, 4. (5.16)

Also, as an analogue to Eq. (5.9), we define

h∗m(x, y, t; j, k, n)
def= ( f x∗

m (x, y, t; j, k, n), f y∗
m (x, y, t; j, k, n), u∗m(x, y, t; j, k, n)

)
,

m= 1, 2, 3, 4. (5.17)

Note that, by their definitions, (i)( f x
m)

n
j,k, ( f y

m)
n
j,k, ( f x

m,`)
n
j,k, and( f y

m,`)
n
j,k are functions of

(um)
n
j,k,m= 1, 2, 3, 4; (ii) ( f x

mx)
n
j,k and( f y

mx)
n
j,k are functions of(um)

n
j,k and(umx)

n
j,k,m=

1, 2, 3, 4; (iii) ( f x
my)

n
j,k and ( f y

my)
n
j,k are functions of(um)

n
j,k and (umy)

n
j,k,m= 1, 2, 3, 4;

and (iv)( f x
mt)

n
j,k and( f y

mt)
n
j,k are functions of(um)

n
j,k and(umt)

n
j,k,m= 1, 2, 3, 4.

Moreover, we assume that, for any(x, y, t)∈SE( j, k, n), and anym= 1, 2, 3, 4,

∂u∗m(x, y, t; j, k, n)

∂t
+ ∂ f x∗

m (x, y, t; j, k, n)

∂x
+ ∂ f y∗

m (x, y, t; j, k, n)

∂y
= 0. (5.18)

Note that Eq. (5.18) is the numerical analogue of Eq. (5.7). With the aid of Eqs. (5.12),
(5.15), (5.16), and the definitions of( f x

mx)
n
j,k and( f y

my)
n
j,k, Eq. (5.18) implies that, for any

m= 1, 2, 3, 4,

(umt)
n
j,k = −

(
f x
mx

)n

j,k −
(

f y
my

)n

j,k = −
4∑
`=1

[
f x
m,`u`x + f y

m,`u`y
]n

j,k. (5.19)

Thus,(umt)
n
j,k is a function of(um)

n
j,k, (umx)

n
j,k, and(umy)

n
j,k. From this result and the facts

stated following Eq. (5.17), one concludes that the only independent discrete variables that
need to be solved for in the current marching scheme are(um)

n
j,k, (umx)

n
j,k, and(umy)

n
j,k.

Consider the conservation elements depicted in Figs. 9a and 10a. The Euler counterpart
to Eq. (3.10) is ∮

S(CEr ( j,k,n))
h∗m · ds= 0, r = 1, 2, 3, m= 1, 2, 3, 4, (5.20)

where( j, k, n)∈Ä.
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To proceed further, we shall introduce the Euler counterparts of Eqs. (3.16), (3.17), (3.21),
and (3.22). For any( j, k, n)∈Ä, let( f ζm,`

)n

j,k(
f ηm,`
)n

j,k

 def= T−1

( f x
m,`

)n

j,k(
f y
m,`

)n

j,k

 , m, ` = 1, 2, 3, 4 (5.21)

and (
(umζ )

n
j,k

(umη)
n
j,k

)
def= Tt

(
(umx)

n
j,k

(umy)
n
j,k

)
, m= 1, 2, 3, 4. (5.22)

The normalized counterparts of those parameters defined in Eqs. (5.21) and (5.22) are

(
f ζ+m,`

)n

j,k
def= 31t

21ζ

(
f ζm,`
)n

j,k, and
(

f η+m,`

)n

j,k
def= 31t

21η

(
f ηm,`
)n

j,k (5.23)

and

(u+mζ )
n
j,k

def= 1ζ
6
(umζ )

n
j,k, and (u+mη)

n
j,k

def= 1η
6
(umη)

n
j,k. (5.24)

To simplify the following development, we may strip from every discrete variable in an
equation (or in a statement) its indicesj, k, andn if all variables are associated with the same
mesh point( j, k, n)∈Ä. Let u, ut , u+ζ , andu+η , respectively, be the 4× 1 column matrices
formed byum, umt, u

+
mζ , andu+mη,m= 1, 2, 3, 4. LetFζ+ andFη+, respectively, denote the

4× 4 matrices formed byf ζ+m,` and f η+m,`, m, `= 1, 2, 3, 4. Let I be the 4× 4 identity matrix.
Let the 4× 4 coefficient matrices6(q)±

rs ,q= 1, 2 andr, s= 1, 2, 3, be defined using a set
of equations that are exactly identical to Eqs. (3.27)–(3.35) except that

(1) eachσ (q)±rs be replaced by its Euler image6(q)±
rs and

(2) νζ , νη, and any real numberφ, be replaced by their Euler imagesF ζ+, Fη+, and
φ I , respectively.
Note that matrix multiplication is not commutative. Thus, in applying the substitution rule
(2), the order of factors in any product in Eqs. (3.27)–(3.35) should not be altered.

As will be shown, under the above and other rules of substitution to be given later, many
parameters, variables, and equations introduced in Sections 3 and 4 have their designated
Euler images. It can be shown easily that the Euler images of Eqs. (3.49) and (3.50) are also
valid. Note that, for simplicity, hereafter the Euler image of an equation such as Eq. (3.49)
may be denoted as Eq. (EI-3.49).

Equation (5.20) is evaluated in Appendix C of [7]. This evaluation is greatly simplified
by the fact thatu∗m(x, y, t; j, k, n), f x∗

m (x, y, t; j, k, n), and f y∗
m (x, y, t; j, k, n) are linear

in x, y, andt (see Eqs. (5.12), (5.15), and (5.16)). As a result of that fact, Eq. (5.17) implies
that, for anyr = 1, 2, 3, the total flux ofh∗m leaving CEr ( j, k, n) through any one of the
six quadrilaterals that form its boundary is equal to the scalar product of the vectorh∗m
evaluated at the centroid of the quadrilateral and the surface vector (defined in Section 3) of
the quadrilateral. Let( j, k, n)∈Äq. Then, with the aid of Eq. (5.11), for any pair ofq and
r (q= 1, 2 andr = 1, 2, 3), the final evaluation results withm= 1, 2, 3, 4 can be combined
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into the matrix form[
6
(q)+
r 1 u+6(q)+

r 2 u+ζ +6(q)+
r 3 u+η

]n
j,k =

[
6
(q)−
r 1 u+6(q)−

r 2 u+ζ +6(q)−
r 3 u+η

]n−1/2
( j,k;q,r ). (5.25)

Equation (5.25) is the Euler image of Eq. (3.26) under the substitution rules (1) and
(3) u, ut , u

+
ζ , andu+η be replaced by their Euler imagesu, ut , u+ζ , andu+η , respectively.

Note that (i) for each( j, k, n)∈Äq,q= 1, 2, Eq. (5.25) represents a system of three
matrix equations while Eq. (3.26) represents a system of three scalar equations; (ii) matrix
multiplication is not commutative; and (iii) the coefficient matrices6(q)±

rs are functions of
un

j,k while the coefficientsσ (q)±rs are constants. As a result, in spite of the fact that Eq. (5.25)
shares with Eq. (3.26) the same algebraic structure, as will be shown shortly, the algebraic
structure of the solution to Eq. (5.25) is more complex than that of Eq. (3.26).

Using an argument similar to that leads to Eq. (3.51), one concludes that the Euler image
of Eq. (3.51) is also valid.

Note that, for any( j, k, n)∈Äq, the matrices(6(q)+
r 1 )nj,k, r = 1, 2, 3, are known functions

of un
j,k. Thus they can be evaluated after the latter is evaluated using Eq. (EI-3.51). Assum-

ing the existence of the inverse of each of the matrices(6
(q)+
r 1 )nj,k, one can also evaluate

S(q)r (q= 1, 2 andr = 1, 2, 3), where

S(q)r
def=
[(
6
(q)+
r 1

)n

j,k

]−1
× [6(q)−

r 1 u+6(q)−
r 2 u+ζ +6(q)−

r 3 u+η
]n−1/2
( j,k;q,r ). (5.26)

Note that the above inverse must exist if the localCFL number at( j, k, n) is less than
2/3 (see a theorem in Appendix D.3 in [7]). Moreover, numerical evidence suggests that
generally it is safe to make the existence assumption as long as the localCFL number<1.

By multiplying Eq. (5.25) from the left with

[(
6
(q)+
r 1

)n

j,k

]−1

repeatedly with all possible pairs ofq and r , and using Eqs. (EI-3.27)–(EI-3.35) and
Eq. (5.26), one obtains a set of equations [7] that are the Euler images of Eqs. (3.37)–
(3.42) under the substitution rules (2), (3), and

(4) eachs(q)r be replaced by its Euler imageS(q)r .
Let ua+

ζ andua+
η be defined using the Euler image of Eq. (3.53) under the substitution

rules (4) and
(5) ua+

ζ andua+
η be replaced by their Euler imagesua+

ζ andua+
η , respectively.

Then the validity of Eq. (EI-3.52) follows from Eqs. (EI-3.37)–(EI-3.42). The 2D Euler
a scheme is formed by Eqs. (EI-3.51) and (EI-3.52). This scheme is a two-way marching
scheme in the sense that the conservation conditions Eq. (5.20) can also be used to construct
its backward time marching version.

Note that the matrices(6(q)+
rs )nj,k are nonlinear functions ofun

j,k. Thus, for each( j, k, n)∈
Äq,q= 1, 2, Eq. (5.25) represents a system of three nonlinear matrix equations. Generally
one would not expect that Eq. (5.25) can be solved through a noniterative explicit procedure
as described above. The key to the unexpectedly simple solution procedure is the fact that
un

j,k can be evaluated explicitly using Eq. (EI-3.51). In the following, we will explain how
Eq. (EI-3.51) arises and give a hint on how to preserve the simplicity of the current solution
procedure in case an irregular spatial mesh is used.
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Note that, because of Eq. (4.1),

∮
S(CE( j,k,n))

h∗m · ds= 0, ( j, k, n) ∈ Ä (5.27)

is the direct result of Eq. (5.20). According to Eq. (4.1),CE( j, k, n) is the hexagonal
cylinder A′B′C′D′E′F ′ABC DE F depicted in Figs. 9a and 10a. Except for the top face
A′B′C′D′E′F ′, the other boundaries of this cylinder are the subsets of three solution ele-
ments at the(n − 1/2)th time level. Thus, for anym= 1, 2, 3, 4, the flux ofh∗m leaving
CE( j, k, n) through all the boundaries except the top face can be evaluated in terms of
the marching variables at the(n − 1/2)th time level. On the other hand, because the top
face is a subset of SE( j, k, n), the flux leaving there is a function of the marching variables
associated with the mesh point( j, k, n). Furthermore, because the outward normal to the top
face has no spatial component, the total flux ofh∗m leavingCE( j, k, n) through the top face
is the surface integral ofu∗m over the top face. Because the center of SE( j, k, n) coincides
with the center of the top face, it is easy to see that the first-order terms in Eqs. (5.12) do
not contribute to the total flux leaving the top face. It follows that the total flux leaving
the top face is a function of(um)

n
j,k only. As a result of the above considerations,un

j,k can
be determined in terms of the marching variables at the(n − 1/2)th time level by using
Eq. (5.27) only. Equation (EI-3.51) is the direct result of Eq. (5.27).

From the above discussion, it becomes obvious that, in case an irregular spatial mesh is
used [12, 13],un

j,k can still be expressed as a simple function of the marching variables at
the(n− 1/2)th time level as long as the mesh point( j, k, n) is located at the center of the
top face ofCE( j, k, n). Note that in this case the three top faces ofCEr ( j, k, n), r = 1, 2, 3,
generally do not meet at the mesh point( j, k, n).

5.2. The 2D Euler a-ε Scheme

Equation (5.27) is assumed in the 2D Eulera-ε scheme. As a result, Eq. (EI-3.51) is also
applicable to the new scheme.

To construct the rest of the scheme, consider any( j, k, n)∈Äq and anym= 1, 2, 3, 4. Let
(u′m)

n
( j,k;q,r ), (u

c
mζ )

n
j,k, and(uc

mη)
n
j,k be defined by a set of equations identical to Eqs. (4.3),

(4.6), and (4.7) except that the symbolsu′, u, ut , uc
ζ , anduc

η in the latter equations are
replaced, respectively, by the symbols(u′m), um, umt, uc

mζ , anduc
mη in the former equations.

Furthermore, let(uc+
mζ )

n
j,k and (uc+

mη)
n
j,k be defined using an equation that is identical to

Eq. (4.8) except that the symbolsuc+
ζ , u

c
ζ , u

c+
η , anduc

η in the latter equation are replaced,
respectively, by the symbolsuc+

mζ , uc
mζ , uc+

mη, anduc
mη in the former equation.

Moreover, letu′, uc
ζ , u

c
η, u

c+
ζ , anduc+

η , respectively, denote the 4× 1 column matrices
formed byu′m, u

c
mζ , u

c
mη, u

c+
mζ , anduc+

mη,m= 1, 2, 3, 4. Then one can obtain a set of equations
[7] that are the Euler images of Eqs. (4.3), (4.4), and (4.6)–(4.10) under the substitution
rules (2), (3), (5), and

(6) u′, uc
ζ , u

c
η, u

c+
ζ , anduc+

η be replaced by their Euler imagesu′, uc
ζ , uc

η, uc+
ζ , anduc+

η ,
respectively.
Note that it should be understood that the parameterε in Eqs. (4.9) and (4.10) also appears
as the same scalar (notε I as required by the rule (2)) in Eqs. (EI-4.9) and (EI-4.10).

The 2D Eulera-ε scheme is formed by Eqs. (EI-3.51), (EI-4.9), and (EI-4.10) for any
( j, k, n)∈Äq.
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5.3. The 2D Euler a-ε-α-β Scheme

If discontinuities are present in a numerical solution, the above Euler schemes are not
equipped to suppress numerical wiggles that generally appear near these discontinuities. In
the following, we shall describe a remedy for this deficiency.

As a preliminary, for any( j, k, n)∈Äq, anym= 1, 2, 3, 4, and anyr = 1, 2, 3, let

xm,r
def= (−1)q

[
(um)

n
j,k − (u′m)n( j,k;q,r )

]
(5.28)(

u(r )mζ

)n

j,k
def= g(r )ζ (xm,1, xm,2, xm,3),

(
u(r )mη

)n

j,k
def= g(r )η (xm,1, xm,2, xm,3) (5.29)(

u(r )mx

)n

j,k
def= g(r )x (xm,1, xm,2, xm,3),

(
u(r )my

)n

j,k
def= g(r )y (xm,1, xm,2, xm,3). (5.30)

Hereg(r )ζ , g
(r )
η , g

(r )
x , andg(r )y , r = 1, 2, 3, are the functions defined by (x1, x2, andx3 are any

real numbers)

g(1)ζ (x1, x2, x3)
def=−(2x2+ x3)/1ζ, g(1)η (x1, x2, x3)

def=−(x2+ 2x3)/1η (5.31)

g(2)ζ (x1, x2, x3)
def= (2x1+ x3)/1ζ, g(2)η (x1, x2, x3)

def= (x1− x3)/1η (5.32)

g(3)ζ (x1, x2, x3)
def= (x1− x2)/1ζ, g(3)η (x1, x2, x3)

def= (2x1+ x2)/1η (5.33)

g(1)x (x1, x2, x3)
def=− 3

2w
(x2+ x3), g(1)y (x1, x2, x3)

def= (3b+ w)x2+ (3b− w)x3

2wh
(5.34)

g(2)x (x1, x2, x3)
def= 3x1

2w
, g(2)y (x1, x2, x3)

def=− (3b+ w)x1+ 2wx3

2wh
(5.35)

g(3)x (x1, x2, x3)
def= 3x1

2w
, g(3)y (x1, x2, x3)

def= (w − 3b)x1+ 2wx2

2wh
. (5.36)

To proceed further, for any( j, k, n)∈Äq,q= 1, 2, consider any fixed value ofm= 1, 2,
3, 4. Let Pm, Qm, and Rm be the three points in theζ -η-u space with (i) theirζ - and
η-coordinates being those of the mesh points(( j, k;q, r ), n− 1/2), r = 1, 2, 3, respec-
tively, and (ii) theiru-coordinates being(u′m)

n
( j,k;q,r ), r = 1, 2, 3, respectively. LetOm de-

note the point in theζ -η-u space with the coordinates( j1ζ, k1η, (um)
n
j,k). Let planes 1, 2,

and 3, respectively, be the planes containing the following trios of points: (i) pointsOm, Qm,
andRm; (ii) points Om, Rm, andPm; and (iii) pointsOm, Pm, andQm. Then it can be shown
that [7], at any point on planer, r = 1, 2, 3, we have(

∂u

∂ζ

)
η

= (u(r )mζ

)n

j,k,

(
∂u

∂η

)
ζ

= (u(r )mη

)n

j,k (5.37)

and (
∂u

∂x

)
y

= (u(r )mx

)n

j,k,

(
∂u

∂y

)
x

= (u(r )my

)n

j,k. (5.38)

Thus, at any point on planer, r = 1, 2, 3, we have

|∇u| = (θmr)
n
j,k

def=
[√(

u(r )mx
)2+ (u(r )my

)2
]n

j,k

. (5.39)
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Note that, by definition,(θmr)
n
j,k, r = 1, 2, 3, are scalars. For readers who are not familiar

with tensor analysis, note that(θmr)
n
j,k would not be a scalar and therefore the first equality

sign in Eq. (5.39) would not be valid ifu(r )mx andu(r )my in the same equation, respectively, are

replaced byu(r )mζ andu(r )mη.
For any( j, k, n)∈Ä, let

u(r )+mζ
def= 1ζ

6
u(r )mζ , u(r )+mη

def= 1η
6

u(r )mη. (5.40)

Then it can be shown that [7]

uc+
mζ =

1

3

[
u(1)+mζ + u(2)+mζ + u(3)+mζ

]
, uc+

mη =
1

3

[
u(1)+mη + u(2)+mη + u(3)+mη

]; (5.41)

i.e.,uc+
mζ (u

c+
mη) is the simple average ofu(r )+mζ (u

(r )+
mη ), r = 1, 2, 3.

By using an argument similar to that used to justify the introduction of a special weighted
average defined by Eqs. (4.38) and (4.39) in [2], two weighted averages, respectively, of
u(r )+mζ andu(r )+mη , r = 1, 2, 3, are defined here by (α is any number≥ 0)

uw+mζ
def=
0, if θm1 = θm2 = θm3 = 0

(θm2θm3)
αu(1)+mζ + (θm3θm1)

αu(2)+mζ + (θm1θm2)
αu(3)+mζ

(θm1θm2)α + (θm2θm3)α + (θm3θm1)α
, otherwise

(5.42)

and a similar definition in which all the subscriptsζ in Eq. (5.42) are replaced byη.
Obviously uw+mζ = uc+

mζ and uw+mη = uc+
mη if α= 0. Note that, to avoid dividing by zero, in

practice a small positive number such as 10−60 may be added to the denominators on the
right side of Eq. (5.42).

Note that the denominator in Eq. (5.42) vanishes ifα > 0 and any two ofθm1, θm2, and
θm3 vanish. Thus, consistency of Eq. (5.42) requires proof of the propositionθm1= θm2=
θm3= 0, if any two ofθm1, θm2, andθm3 vanish. The proof is given in [7]. Also note that, as
a result of the above definitions, it can be shown that [7]

uw+mζ = uc+
mζ and uw+mη = uc+

mη, if θm1 = θm2 = θm3. (5.43)

Let uw+ζ (uw+η ) be the column matrix formed byuw+mζ (u
w+
mη ),m= 1, 2, 3, 4. Then, for any

( j, k, n)∈Ä, the 2D Eulera-ε-α-β scheme is defined by Eq. (EI-3.51) and

(u+ζ )
n
j,k =

(
ua+
ζ

)n

j,k + 2ε
(
uc+
ζ − ua+

ζ

)n

j,k + β
(
uw+ζ − uc+

ζ

)n

j,k (5.44)

and

(u+η )
n
j,k =

(
ua+
η

)n

j,k + 2ε
(
uc+
η − ua+

η

)n

j,k + β
(
uw+η − uc+

η

)n

j,k. (5.45)

Here (i)ε andβ are adjustable parameters; and (ii)uw+ζ anduw+η are implicitly dependent
on the adjustable parameterα. The scheme reduces to the 2D Eulera-ε scheme ifβ = 0
or α= 0. It further reduces to the 2D Eulera scheme if, in addition,ε= 0. Note that a
discussion on how to choose the values of the parametersε, α, andβ will be given later in
this section.
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Note that numerical dissipation is added to the 2D Eulera-ε-α-β not through the main
equation Eq. (EI-3.51) (which is equivalent to the conservation condition Eq. (5.27)). Rather
it is introduced through two secondary equations which evaluate spatial derivatives. We
suspect that this special feature, which is common to all CE/SE schemes, contributes to the
accuracy of the CE/SE method.

Furthermore, note that the numerical dissipation introduced can be divided into two
different types. Numerical dissipation ofε-type, i.e., that results from adding the second
term to the right side of each of Eqs. (5.44) and (5.45), generally is very effective in
damping out numerical instabilities that arise from the smooth region of a solution. But
it is less effective in suppressing numerical wiggles that often occur near a discontinuity.
On the other hand, numerical dissipation ofα-β-type, i.e., that results from adding the
third term, is very effective in suppressing numerical wiggles. Moreover, because, for each
m= 1, 2, 3, 4, θm1, θm2, andθm3 are nearly equal in the smooth region, Eq. (5.43) implies
that(uw+ζ )nj,k and(uc+

ζ )
n
j,k are also nearly equal there. As a result, numerical dissipation of

α-β-type has very slight effect in the smooth region.
According to Eq. (5.26), at each mesh point∈Äq,q= 1, 2, implementation of the above

Euler schemes generally requires inverting three matrices (corresponding tor = 1, 2, 3).
As a result, the schemes may be referred to as locally implicit. In the following, we shall
describe how these schemes can be simplified and become completely explicit.

5.4. The Simplified 2D Euler Schemes

Equation (5.27) is assumed in the simplified schemes. As a result, Eq. (EI-3.51) is also
applicable to the new schemes.

To construct the rest of the simplified schemes, we assume that the coefficient matrices
6
(q)+
r 1 vary only slightly among neighboring mesh points. Thus,

(
6
(q)+
r 1

)n

j,k ≈
(
6
(q)+
r 1

)n−1/2
( j,k;q,r ). (5.46)

Note that, according to extensive numerical evidence, the above approximation generally
is accurate for subsonic, transonic, and supersonic flows as long as the mesh intervals and
time-step size used are small enough. With the aid of Eqs. (EI-3.27)–(EI-3.35), a substitution
Eq. (5.46) into Eq. (5.26) reveals that [7]

S(q)r ≈ s(q)r , q= 1, 2; r = 1, 2, 3, (5.47)

wheres(q)r are defined using a set of equations that are exactly identical to Eqs. (3.43)–(3.48)
except thats(q)r , u+ζ , u

+
η , νζ , νη, and any real numberφ are replaced bys(q)r , u+ζ , u

+
η , F ζ+,

Fη+, andφ I , respectively, using the substitution rules (2), (3), and
(4a) eachs(q)r be replaced by its alternative Euler images(q)r .

Note that, according to (4),S(q)r is also a Euler image ofs(q)r . Thus, to avoid confusion,
hereafters(q)r is referred to as the alternative Euler image ofs(q)r .

Furthermore, as a result of Eqs. (5.47),ua′+
ζ andua′+

η are defined using the alternative
Euler image of Eq. (3.53) under the rules (4a) and

(5a) ua+
ζ andua+

η be replaced by their alternative Euler imagesua′+
ζ andua′+

η , res-
pectively.
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The simplified schemes differ from the original schemes only in the fact thatua+
ζ andua+

η

in the latter schemes, respectively, are replaced byua′+
ζ andua′+

η in the former schemes. Note
that the Euler schemes presented in [2] are the 1D counterparts of the current simplified
schemes. The 1D counterparts of the full Euler schemes are described in [7].

5.5. Remarks on the Parametersε, α, andβ

According to numerical evidence and the analysis given in Section 7 of [7], stability
of the current Euler solvers requires that (i) 0≤ ε≤ 1, (ii) β ≥ 0, (iii) α≥ 0, and (iv) the
maximalCFL number≤1. Numerical evidence also suggests that the numerical dissipation
introduced generally increases with the value ofε, α, andβ.

Let ε= 1/2 andβ = 1. Then the 2D Eulera-ε-α-β scheme and its simplified version
reduce to the same scheme. For any( j, k, n)∈Ä, the reduced scheme is formed by Eq. (EI-
3.51) and

(u+ζ )
n
j,k =

(
uw+ζ

)n

j,k, and (u+η )
n
j,k =

(
uw+η

)n

j,k. (5.48)

The above scheme is one of the simplest among the 2D Euler solvers known to the authors.
The value ofα is the only adjustable parameter allowed in this scheme. Generally, with the
choice ofα= 1 orα= 2, the numerical dissipation introduced is sufficient to suppress nu-
merical wiggles. Because it is totally explicit and has the simplest stencil, the scheme is also
highly compatible with parallel computing. Furthermore, it will be shown in Section 7 that,
in broad applications, the scheme can accurately capture shocks and contact discontinuities
with high resolution and no numerical oscillations.

Note that, withε, α, andβ being held constant, numerical dissipation associated with
the 2D Eulera-ε-α-β scheme (and its simplified version) at a mesh point( j, k, n) tends to
increase as the localCFL numberνn

j,k decreases. To compensate for this effect,ε andβ in
Eqs. (5.44) and (5.45), respectively, may be replaced byε(νn

j,k) andβ(νn
j,k), whereε(x) and

β(x), 0≤ x≤ 1, are monotonically increasing functions ofx with ε(0)= 0 andβ(0)= 0.
Note that:

(a) It is shown in Figs. 12–14 of [2] that, with the choice

ε(x) = 0.5x exp(1− x) and β(x) = √x, 0≤ x ≤ 1, (5.49)

an 1D CE/SE Euler solver can be used to obtain accurate shock tube solutions with the
maximalCFL number in each numerical simulation ranging from 0.88 to 0.022.

(b) In a numerical simulation involving a nonuniform mesh, the localCFL number
may vary sharply across the computational domain. For this case, the local values ofε, β,
andα may be adjusted such that no excessive local numerical dissipation occurs in the
computational domain.

6. NUMERICAL RESULTS

The accuracy of the 2Da anda-ε schemes were evaluated in [12] using a translating
Gaussian hill model problem. Also, the accuracy of the 2D Euler solvers described in
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Section 5 was evaluated in [8, 10, 20, 25] by comparing the computed results with exact or
experimental results for numerous flow problems involving shocks, contact discontinuities,
vortices, acoustic waves, and their interactions.

To give the reader a clear idea about the accuracy and robustness of the CE/SE method
in general, and yet to not be burdensome with overly extensive numerical results, in this
section we shall focus on the accuracy evaluation of the simplest 2D Euler scheme, i.e.,
that defined by Eqs. (EI-3.51) and (5.48). For reasons that will become clear to the reader
shortly, we begin with a discussion of the concept of dual space-time meshes.

6.1. Concept of Dual Space-Time Meshes

Recall that the mesh point setÄ is defined in Section 3 such that( j, k, n± 1/2) /∈Ä if
( j, k, n)∈Ä. LetÄ′ be defined such that( j, k, n)∈Ä′ if and only if ( j, k, n± 1/2)∈Ä.
As an example, consider Fig. 5a. PointsA, C, E, andG′ belong toÄ while pointsA′, C′,
E′, andG belong toÄ′. Obviously any of the 2D schemes described in Sections 3–5, e.g.,
the 2Da scheme, can also be constructed using the mesh points( j, k, n)∈Ä′. As a matter
of fact, one can even combine two independent 2Da schemes, one constructed using the
mesh points∈ Ä and the other using the mesh points∈ Ä′, into a “single” scheme referred
to as the 2D duala scheme. A mesh that contains all the mesh points belonging to either
Ä orÄ′ is referred to as a dual space-time mesh. Note that a CE of a mesh point∈ Ä may
coincide with a CE of another mesh point∈ Ä′.

Note thatÄ1 (Ä2) was defined in Section 3 so that a mesh point( j, k, n)∈Ä1 (Ä2) if and
only if ( j, k, n)∈Ä andn is a half-integer (a whole integer). Similarly, we defineÄ′1 (Ä′2)
so that a mesh point( j, k, n)∈Ä′1 (Ä′2) if and only if ( j, k, n)∈Ä′ andn is a half-integer
(a whole integer).

6.2. Initial/Boundary Conditions

The steady-state oblique shock problem suggested by Yee and others [32], one of the
test problems to be considered later, will be used as the prototypical case in the following
discussion.

The computational domain and the shock locations (AE andE F) are depicted in Fig. 14.
The lower boundary is a solid wall. Assumingγ = 1.4, then the exact Euler solutions to
regionsABE, AE F D, andEC F are

u = 2.9, v = 0., ρ = 1.0, p = 1.0/1.4 (regionABE), (6.1)

u = 2.6193, v = −0.50632, ρ = 1.7000, p = 1.5282 (regionAE F D), (6.2)

FIG. 14. The computation domain and the shock locations of a steady-state oblique shock problem.
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FIG. 15. The spatial locations and the mesh indices(r, s) of mesh points used in a steady-state oblique shock
problem(R= S= 4).

and

u = 2.4015, v = 0., ρ = 2.6872, p = 2.9340 (regionEC F), (6.3)

respectively.
The mesh used in this test problem is depicted in Fig. 15. Again a mesh point( j, k, n)∈

Ä1 (Ä2) is marked by a solid (hollow) circle. The mesh is a special case (b= 0) of that
depicted in Figs. 6–8. Note that only the mesh points∈ Ä2 are present at the inflow and
outflow boundaries. Moreover, a mesh point and the corresponding marching variable will
be identified by the time-level numbern and two new mesh indicesr ands which are given
in Fig. 15 as a pair of integers enclosed in parentheses. Note that, for the mesh points∈Ä1,
r = 1, 2, 3, . . . , R, R+ 1 ands= 2, 4, 6, . . . ,2S. On the other hand, for the mesh points
∈ Ä2, r = 1, 2, 3, . . . , R, R+ 1 ands= 1, 3, 5, . . . ,2S− 1, 2S+ 1.

With the above preliminaries, the initial and boundary conditions can now be specified.
At all mesh points(r, s, 0), it is assumed that (i)um, m= 1, 2, 3, 4 are evaluated using
Eq. (6.1), and (ii)

u+mζ = u+mη = 0, m= 1, 2, 3, 4. (6.4)

Furthermore, forn= 1, 2, 3, . . . , the above conditions (i) and (ii) are applied at all mesh
points at the inflow boundaryAB (see Fig. 15).

At the upper boundaryAD, for all n= 1/2, 1, 3/2, 2, . . . , (i) um are evaluated using
Eq. (6.2), and (ii)u+mζ andu+mη are evaluated using Eq. (6.4).

The solid-wall boundary conditions atBC will be constructed by assuming that, at any
time t , the flow fields below and aboveBC are the mirror images of each other. By using
the definitions ofum given in Eq. (5.1) and the fact thaty= 0 at any point onBC, it can be
shown that the last assumption implies that

um(x,−y, t) = um(x, y, t), m= 1, 2, 4, and u3(x,−y, t) = −u3(x, y, t) (6.5)
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∂um

∂x
(x,−y, t) = ∂um

∂x
(x, y, t) and

∂um

∂y
(x,−y, t) = −∂um

∂y
(x, y, t), m= 1, 2, 4

(6.6)

and

∂u3

∂x
(x,−y, t) = −∂u3

∂x
(x, y, t) and

∂u3

∂y
(x,−y, t) = ∂u3

∂y
(x, y, t). (6.7)

The numerical boundary conditions corresponding to Eqs. (6.5)–(6.7) are

(um)
n
R+1,s = (um)

n
R,s, m= 1, 2, 4, and (u3)

n
R+1,s = −(u3)

n
R,s, (6.8)

(umx)
n
R+1,s = (umx)

n
R,s and (umy)

n
R+1,s = −(umy)

n
R,s, m= 1, 2, 4, (6.9)

and

(u3x)
n
R+1,s = −(u3x)

n
R,s, and (u3y)

n
R+1,s = (u3y)

n
R,s, (6.10)

respectively. According to Fig. 15, the range ofs in Eqs. (6.8)–(6.10) is dependent on the
time leveln. Let (i) S′ = S if S is even; and (ii)S′ = S− 1 if S is odd. Then (i)s= 4, 8,
12, . . . ,2S′ if n= 1/2, 3/2, . . . , and (ii) s= 1, 5, 9, . . . ,2S′ + 1 if n= 1, 2, . . .. Further-
more, by using Eq. (C.4) in [7] withb= 0, it can be shown that Eqs. (6.9) and (6.10) are
equivalent to

(u+mζ )
n
R+1,s = (u+mη)nR,s and (u+mη)

n
R+1,s = (u+mζ )nR,s, m= 1, 2, 4 (6.11)

and

(u+3ζ )
n
R+1,s = −(u+3η)nR,s, and (u+3η)

n
R+1,s = −(u+3ζ )nR,s, (6.12)

respectively. Equations (6.8), (6.11), and (6.12) are the boundary conditions at the lower
wall (a solid wall).

At the outflow boundaryC D, for anyn= 1, 2, 3, . . . , andr = 1, 2, 3, . . . , R, we assume
that

(um)
n
r,2S+1 = (um)

n−1/2
r,2S , m= 1, 2, 3, 4 (6.13)

(umx)
n
r,2S+1 = 0, m= 1, 2, 3, 4 (6.14)

and

(umy)
n
r,2S+1 = (umy)

n−1/2
r,2S , m= 1, 2, 3, 4. (6.15)

Note that, becauseb= 0, Eqs. (6.14) and (6.15) are equivalent to

(u+mζ )
n
r,2S+1 =

1

2
(u+mζ − u+mη)

n−1/2
r,2S , m= 1, 2, 3, 4 (6.16)

and

(u+mη)
n
r,2S+1 =

1

2
(u+mη − u+mζ )

n−1/2
r,2S , m= 1, 2, 3, 4. (6.17)
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Thus the marching variables at the outflow boundary can be determined using Eqs. (6.13),
(6.16), and (6.17). Note that, according to the numerical results to be presented, the outflow
boundary conditions are nonreflecting in nature.

With the aid of the above initial and boundary conditions, the marching variables at all
mesh points (including those located at the bottom solid wallBC) can be determined by
using the scheme defined by Eqs. (EI-3.51) and (5.48).

In the oblique shock problem described above, only a horizontal solid wall is present. In
other 2D test problems to be described later, both horizontal and vertical solid walls may
be present. As will be shown immediately, imposing the solid-wall boundary conditions
at a vertical wall over a uniform mesh similar to that depicted in Fig. 15 is slightly more
complicated than that at a horizontal wall.

Consider the mesh depicted in Fig. 16a. LetBC andC D be solid walls. Note that, given
any exterior mesh point(R+ 1, s, n) that lies immediately belowBC, one can find an

FIG. 16. The spatial locations and the mesh indices (r, s) of mesh points used in a problem with both horizontal
and vertical walls. (a) Mesh points∈ Ä. (b) Mesh points∈ Ä′.
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interior mesh point that lies at the same time level and also is the mirror image (relative
to BC) of the exterior mesh point. As a result, the solid-wall boundary conditions Eqs. (6.8)–
(6.10) can be imposed. Contrarily, given any exterior mesh point(r, 2S+ 1, n), n= 0, 1, 2, . . .
that lies immediately to the right ofC D, one cannot find an interior mesh point that lies at
the same time level and is the mirror image (relative toC D) of the exterior mesh point. As
a result, the mirror image conditions for the vertical wallC D, i.e.,

(um)
n
r,2S+1 = (um)

n
r,2S, m= 1, 3, 4, and (u2)

n
r,2S+1 = −(u2)

n
r,2S (6.18)

(umx)
n
r,2S+1 = −(umx)

n
r,2S and (umy)

n
r,2S+1 = (umy)

n
r,2S, m= 1, 3, 4 (6.19)

and

(u2x)
n
r,2S+1 = (u2x)

n
r,2S, and (u2y)

n
r,2S+1 = −(u2y)

n
r,2S (6.20)

cannot be used directly as the solid-wall boundary conditions.
Two approaches can be used to overcome the above difficulty. In the first and more

restrictive approach, the following approximate forms of Eqs. (6.18)–(6.20) are used as the
solid-wall boundary conditions:

(um)
n
r,2S+1 = (u′m)nr,2S, m= 1, 3, 4, and (u2)

n
r,2S+1 = −(u′2)nr,2S (6.21)

(umx)
n
r,2S+1 = −(umx)

n−1/2
r,2S and (umy)

n
r,2S+1 = (umy)

n−1/2
r,2S , m= 1, 3, 4 (6.22)

and

(u2x)
n
r,2S+1 = (u2x)

n−1/2
r,2S , and (u2y)

n
r,2S+1 = −(u2y)

n−1/2
r,2S . (6.23)

Here(u′m)
n
r,2S, m= 1, 2, 3, 4, are evaluated using the known marching variables at the mesh

point (r, 2S, n− 1/2) with the aid of the first-order Taylor’s expansion.
In the second and generally more accurate and preferable approach, the present marching

procedure is applied over a dual mesh, i.e., the combination of two staggered space-time
meshes depicted in Figs. 16a and 16b. As shown in Fig. 16b, a mesh point∈ Ä′ is also
identified by two spatial indicesr ands and the time-level numbern. Furthermore, a mesh
point∈ Ä′1 (Ä′2) is marked by a solid (hollow) triangle.

Note that: (i) forn= 0, 1, 2, . . . , (r, 2S+ 1, n) is a mesh point∈Ä while (r, 2S, n) is
a mesh point∈ Ä′, (ii) for n= 1/2, 3/2, 5/2, . . . , (r, 2S+ 1, n) is a mesh point∈ Ä′ while
(r, 2S, n) is a mesh point∈ Ä, and (iii) for anyn= 0, 1/2, 1, 3/2, . . . , the mesh points
(r, 2S+ 1, n) and(r, 2S, n) lie at the same time level and, relative toC D, are mirror images
of each other. As a result, at any time level, the solid-wall boundary conditions atC D can
be imposed using Eqs. (6.18)–(6.20). Note that, as a result of these boundary conditions,
the marching variables associated with the mesh points∈ Ä are now coupled with those
associated with the mesh points∈ Ä′. Also note that the Eqs. (6.19), (6.20), (6.22), and
(6.23) can easily be converted to the versions associated with the(ζ, η) coordinates by using
Eq. (C.4) of [7] withb= 0.

Imposing the conditions Eqs. (6.18)–(6.20) directly requires the use of a dual mesh. As
a result, it has the disadvantage of doubling computational cost. However, the extra cost no
longer becomes an issue in a case in which its use is mandatory, e.g., a numerical simulation
involving unstructured meshes [13, 14].



THE SPACE-TIME CE/SE METHOD 125

6.3. Four Test Problems

In this part, one steady-state problem and three time-dependent problems are solved using
the scheme defined by Eqs. (EI-3.51) and (5.48). A steady-state solution is obtained as the
converged solution of the time-marching procedure. In all numerical simulations,α= 2
is assumed throughout the entire computational domain. Becauseα is the only adjustable
parameter in the present scheme, the same numerical treatment is applied at all interior mesh
points for all four test problems. Also note that, without exception, the numerical results to
be shown are those of the entire computational domain; i.e., no buffer-zone techniques are
used.

To pave the way for the following presentation, a further discussion of the space-time
mesh depicted in Fig. 15 is in order. According to Fig. 15, at each time leveln= 0, 1, 2, . . . ,
there areS+ 1 staggered columns of mesh points (marked by hollow circles) with each
column containingR+ 1 mesh points. Thus, there are(S+ 1)× (R+ 1) mesh points at
each of these time levels. Furthermore, because two neighboring columns are separated by
a distancew while two neighboring mesh points in any column are separated by a distance
2h, we haveS=W/w and R= H/(2h), whereW andH are the width and height of the
computational domain, respectively. If the first, the third, the fifth,. . . columns were moved
upward a distanceh, then the mesh points marked by hollow circles would form a regular
Cartesian spatial mesh withSandR mesh intervals in thex- andy-directions, respectively.
As a result, the mesh formed by the mesh points marked by hollow circles will be referred
to as aS× R mesh.

Similarly, at each time leveln= 1/2, 3/2, . . . , there areS staggered columns of mesh
points (marked by solid circles) with each column containingR+ 1 mesh points. Again
two neighboring columns are separated by a distancew and two neighboring mesh points
in any column are separated by a distance 2h. In this paper, the mesh formed by these mesh
points will also be referred to as aS× R mesh. In general, regardless of how its columns of
mesh points are positioned, a spatial mesh covering a rectangular computational domain of
width W and heightH will be referred to as a(W/w)× (H/(2h))mesh if two neighboring
columns of mesh points are separated by a distancew and two neighboring mesh points in
any column are separated by a distance 2h.

For the dual mesh referred to earlier, there are two sets of mesh points at one time level.
If each set forms a(W/w)× (H/(2h)) mesh, then the dual mesh will be referred to as a
dual(W/w)× (H/(2h)) mesh.

From the above analysis and the fact that it requires two marching steps to advance by a
time period1t in the CE/SE method, the total number of space-time mesh points involved
in a 2D CE/SE simulation is approximately equal to(2T/1t)× S× R, i.e., about twice that
of a 2D single-step regular-mesh simulation if each simulation uses aS× R mesh and both
have the same values of1t and total simulation timeT . Note that, in the special case that a
dual S× R mesh is used, the total number of mesh points involved in a CE/SE simulation
is approximately equal to(4T/1t)× S× R.

To give the reader some idea about the computational efficiency of the present scheme,
note that, for a 300× 120 mesh, the CPU time on a Cray C90 required to execute 180
marching steps (T = 180× (1t/2)) is only 14 s, i.e., about 2.16µs per mesh point per
marching step.

6.3.1. Oblique shock problem.The computational domain, mesh structure, and ini-
tial/boundary conditions used in the current simulations of this problem were described in
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FIG. 17. Pressure contours and pressure coefficient aty= 0.5 of the oblique shock problem (60× 20 mesh).

Section 6.2. A numerical simulation is carried out using a 60× 20 mesh with1t = 0.01.
The resulting steady-state density contours and the pressure coefficientCp (=2(p/p∞−1)/
(γM2

∞) with M∞= 2.9 andp∞= 1.0/1.4 being the inflow Mach number and pressure, re-
spectively) aty= 0.5 are plotted in Fig. 17, where the solid line represents the exact solution.
The improvement in shock resolution by using a finer 120× 40 mesh can be seen in Fig. 18.
No numerical oscillations are detected near either the incident or the reflected shocks, and
the computedCp agrees very well with the exact solution. Moreover, the reflected shock is
as crisp as the incident shock.

6.3.2. 2D supersonic flow past a step.Consider the supersonic channel flow ofMs= 3.0
past a step depicted in Fig. 19. This benchmark problem was used to test Harten’s TVD
ULT1C scheme [33], Giannakouros and Karniadakis’s spectral element-FCT method [34],
and Van Leer’s ultimate conservative difference scheme [35]. It was also used by Woodward
and Colella [36] to compare the accuracy of different numerical methods in handling a shock
discontinuity.

Note that the upper corner of the step is the center of a rarefaction fan and hence is a
singular point of the flow. According to Woodward and Colella [36], unless special numerical
treatments are applied near the corner of the step, the computed solutions would be seriously

FIG. 18. Pressure contours and pressure coefficient aty= 0.5 of the oblique shock problem (120× 40 mesh).
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FIG. 19. Geometry and grid distribution of the 2D supersonic flow past a step problem.

affected by large numerical errors generated in the neighborhood of this singular point. It
will be shown immediately that satisfactory numerical solutions can be obtained by the
present scheme without employing special treatments at the upper corner of the step.

The mesh used in the current simulation is also depicted in Fig. 19. Note that no mesh
point is placed at the singular point at the upper corner of the step. The initial conditions are
set to be the free stream conditions. Furthermore, the constant free stream conditions are
imposed at the inlet while the nonreflecting boundary conditions Eqs. (6.13), (6.16), and
(6.17) are imposed at the exit. In addition, the reflecting (solid-wall) boundary conditions
are imposed at all other boundaries.

To show the improvement in flow solutions with decreased mesh spacing, the density
contours of the solutions obtained by the present solver with 60× 20, 120× 40, and 240× 80
meshes are shown respectively in Fig. 20. Note that the values of1t used in the above
computations are identical to those used in [36], i.e., 0.0075, 0.005, and 0.0025, repectively
(C F L

.= 0.8). From Fig. 20, it is seen that the Mach stem, triple point, slip surface, expansion
fan at the corner, and the interaction between the reflected shock and the rarefaction waves
are accurately simulated in the present solutions. Note that an alternate simulation in which
the dual-mesh reflecting boundary conditions Eqs. (6.18)–(6.20) are imposed at the vertical
step wall yields almost identical results.

6.3.3. Shock reflection from a dust layer.Here, a practical problem of shock reflection
from a dust layer is studied. Following the wedge model described in [37], we consider
a plane shock moving to the right with Mach numberMs= 1.41 toward a wedge whose
surface is inclined at angleθw, as shown in Fig. 21. Square protuberances of sizeL/2 are
placed at equal distancesL apart on the surface to simulate dust particles. The common
origin of the two coordinate systems(x, y) and(x′, y′) is situated at the tip of the wedge,
with thex′- andy′-axes being parallel and normal to the wedge surface, respectively.

As depicted in Fig. 22, the computational domain (−0.5≤ x′/L ≤ 7.0 and 0≤ y′/L ≤ 4)
contains seven protuberances. The front of the incident shock thus makes an angleθw with
they′-axis. Att = 0, the computational domain is divided into two flow regions by the shock
front that intersects thex′-axis atx′/L =−0.4. Standard stationary atmospheric conditions
are assumed in the region to the right of the shock front, while constant fluid conditions with



128 CHANG, WANG, AND CHOW

FIG. 20. Density contours of the 2D supersonic flow past a step problem generated using 60× 20, 120× 40,
and 240× 80 meshes.

FIG. 21. Shock moving past a wedge with a dust layer.

FIG. 22. The computational domain of the dust layer problem.
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Ms= 1.41 are assumed in the other region. Reflecting boundary conditions are imposed at all
solid walls, while nonreflecting boundary conditions are implemented both at the inlet and
outlet and on the part ofx′-axis with−0.5≤ x′/L ≤ 0, through which waves can move freely.
On the upper boundary (y′/L = 4), where the reflected waves have not reached before the end
of all simulations, numerical values are assigned ahead of and behind the plane shock accord-
ing to the exact solution. Computations were carried out forθw = 20◦, 30◦, and 40◦, respec-
tively, using a 300× 180 mesh with1t = 0.01, wheret is made dimensionless usingL as
the reference length and the speed of sound in the undisturbed region as the reference speed.

In order to show a clear comparison between the experimental and computed results, the
CE/SE solutions are plotted in the(x, y)-coordinates through a coordinate transformation.
First, to show the unsteady evolution of wave patterns resulting from the reflection of shock
waves over the dusty wedge, computed density contours at four different time levels for
θw = 30◦ are plotted in Fig. 23. The effect of varying wedge angle on wave pattern can be
observed in the density contour plots shown in Fig. 24 forθw = 20◦ at t = 3.8 and in Fig. 25
for θw = 40◦ at t = 3.0, when the incident shock wave is standing at the upper right corner
of the sixth protuberance. The Schlieren photographs taken from [37] are reproduced in
Figs. 26–28 to show representative wave patterns for the casesθw = 20◦, 30◦, and 40◦ at
different instants. In these photographs, (i) Model B and Model D represent the laboratory
models withL = 8 and 2 mm, respectively, and (ii)T1 denotes the triple point generated by
the reflection of shock waves from the first protuberance. The location ofT1 in thex-direction
is indicated by the numerical value ofx/L in each figure. It is seen that, as the incident
shock wave moves forward, a compression wave is reflected from each protuberance and
an expansion wave is generated from its back. Gradually, the individual compression waves
accumulate to form an envelopeCe and a stronger compression waveC′e (see Fig. 27).
For the cases withθw = 20◦ andθw = 30◦, the developments of wave patterns are almost
the same, while forθw = 40◦, a kink pointK appears as shown in Fig. 28. A comparison
between experimental and numerical results indicates that the photographed wave patterns
are correctly captured in the CE/SE solutions. The close resemblance between Figs. 24 and
26 and that between Figs. 23d and 27 in terms of both wave and vortex structures are clearly
recognizable.

6.3.4. Implosion/explosion of polygonal shock waves in a box.The problem concerning
the implosion/explosion of a polygonal shock wave in a square box studied in [38] is
investigated here. Not only the early stage of the implosion/explosion process, but also its
later development, which was not studied in [38], are simulated here.

All simulations are carried out using (i) a dual 240× 240 mesh covering a square box
(−2≤ x, y≤ 2), and (ii) aCFL number= 0.9. The reflecting boundary conditions are im-
posed at the four sides of the square box with the understanding that the more accurate
dual-mesh reflecting boundary conditions Eqs. (6.18)–(6.20) are used at the vertical walls.

The initial shock wave configuration is a regular polygon. It is assumed that (i) the
polygon shares with the square box the same geometric center (located at(0, 0)), (ii) one
of the vertices of the polygon is located at(0, 0.8×√3), and (iii) there is a low pressure
region inside the polygon with a pressure ratio of 10 across the shock. Note that, as a result
of (i) and (ii), the vertices of the polygon are points on the circumference of the circle that
has a radius= 0.8×√3 and is centered at(0, 0).

As the first step, the early flow field is studied for three cases in which the initial
shock wave configurations are an equilateral triangle, a square, and a regular pentagon,
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FIG. 23. Density contours for the dust layer problem(θw = 30◦) at four different time levels. (a)t = 0.5,
(b) t = 1.75, (c)t = 3, (d) t = 4.



FIG. 24. Density contours att = 3.8 for the dust layer problem(θw = 20◦).

FIG. 25. Density contours att = 3.0 for the dust layer problem(θw = 40◦).

FIG. 26. A Schlieren photography forθw = 20◦.

FIG. 27. A Schlieren photography forθw = 30◦.
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FIG. 28. A Schlieren photography forθw = 40◦.

FIG. 29. Pressure contours for implosion/explosion of a hexagonal shock in a square box.
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FIG. 30. Density contours for implosion/explosion of a hexagonal shock in a square box.

respectively. The computed pressure and density contour plots at different time levels are
shown in Figs. 38 and 39 of [8], respectively. According to these figures, wave patterns
similar to those shown in Figs. 1–5 of [38], obtained using a TVD method on a 359× 359
mesh, are also observed in the CE/SE solutions, displaying detailed features such as Mach
stems and polygon-shaped flow discontinuities.

As the second step, the implosion/explosion of a hexagonal shock wave is simulated until
the second implosion of the shock wave is observed in the box. More complex flow phenom-
ena can be seen in the pressure and density contour plots of Figs. 29 and 30, including the
reflections of shock waves, shock–shock interaction, and shock–contact surface interaction.
It is interesting to note that the shocks and contact discontinuities are still relatively crisp
after multiple reflections of shock waves from solid walls.
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7. CONCLUSIONS AND RECENT DEVELOPMENTS

The space-time CE/SE method was conceived from nontraditional basic beliefs and
designed to avoid the limitations of the traditional methods. It was built from ground zero
with a foundation that is solid in physics and yet mathematically simple enough that one
can build from it a coherent, robust, efficient, and accurate CFD numerical framework. In
this paper, we begin with a clear and thorough discussion of the above motivating ideas
(Section 1). It is then followed by a rigorous exposition of the 2D theoretical development
(Sections 2–5).

To evaluate the accuracy and robustness of the 2D Euler CE/SE schemes, the simplest
among them, i.e., that defined by Eqs. (EI-3.51) and (5.48), was evaluated in Section 6. It was
shown that this scheme can accurately resolve shock and contact discontinuities consistently.
Furthermore, it was shown that the scheme is genuinely robust, i.e., it is compatible with the
simplest nonreflecting boundary conditions, and its accuracy is achieved without resorting
to special treatments for each individual case. Moreover, because it is logically simple and
totally explicit, the scheme is also highly computationally efficient. As a result, generally
it is recommeded that the simplest scheme be used except in the difficult case discussed in
Section 5.5.

Note that other CE/SE schemes described in this paper have also been shown to be
accurate solvers for other applications [8, 11, 20, 21, 25].

The paper is concluded with a discussion of recent CE/SE related developments:

(a) By using the marching variables that are tied to the Cartesian coordinates(x, y),
the concepts described in this paper can be easily extended to construct CE/SE Euler solvers
for irregular triangular meshes [12] or even unstructured triangular meshes [13, 18]. The
accuracy of these solvers has been validated by comparing the numerical results of numerous
test problems with the experimental results. Note that it is shown in [18] that, without using
any preconditioning technique, the 2D CE/SE method can generate accurate numerical
solutions for flows with speeds ranging from Mach number= 0.00288 to 10.

(b) By using tetrahedrons as the basic building blocks of the spatial meshes, a 3D
CE/SE Euler solver compatible with both structured and unstructured meshes has recently
been constructed and described in detail in [14]. The accuracy of this 3D solver and that
of another similar 3D Euler solver [18] have been validated using the following test prob-
lems: (i) the implosion and explosion of a spherical shock wave in a cubical box, (ii) a
supersonic flow over a 3D ramp, and (iii) a hypersonic flow (M∞= 10) over a 3D half
sphere.

(c) To be compatible with the simplest unstructured meshes, most of the multidimen-
sional CE/SE solvers were developed using triangles and tetrahedrons, respectively, as the
basic building blocks of 2D and 3D spatial meshes. However, it is shown in [22–25] that
the 2D and 3D nonsplitting CE/SE Euler solvers can also be constructed using rectangular
meshes. The accuracy of these new solvers is comparable with that of other CE/SE solvers.

(d) Several 2D and 3D CE/SE Navier–Stokes solvers using rectangular, triangular,
and tetrahedral meshes have also been constructed recently. In [23], two test problems,
i.e., (i) shock/boundary layer interaction withM∞= 2 and (ii) natural convection flows in
a square box, are used to validate the accuracy of a 2D CE/SE Navier–Stokes solver in
solving both high-speed and low-speed flows.

(e) Both 1D and 2D solvers for flows involving chemical reactions have recently been
developed by Yuet al. [15, 16].
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(f) An advanced fluid dynamic code for the simulation of 1D unsteady flows in engine
ducts, named GASDYN, has been developed by Onoratiet al.[17]. An extended 1D CE/SE
scheme capable of dealing with the propagation of chemical species is adopted in the code.
It is concluded in [17] that “a comparison of the MacCormack method plus FCT or TVD
algorithms with the CE–SE method has pointed out the superiority of the latter scheme in
the propagation of contact discontinuities.”
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