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Anew high-resolution and genuinely multidimensional numerical method for solv-
ing conservation laws is being developed. It was designed to avoid the limitations
of the traditional methods and was built from ground zero with extensive physics
considerations. Nevertheless, its foundation is mathematically simple enough that
one can build from it a coherent, robust, efficient, and accurate numerical frame-
work. Two basic beliefs that set the new method apart from the established methods
are at the core of its development. The first belief is that, in order to capture physics
more efficiently and realistically, the modeling focus should be placed on the original
integral form of the physical conservation laws, rather than the differential form. The
latter form follows from the integral form under the additional assumption that the
physical solution is smooth, an assumption that is difficult to realize numerically in
a region of rapid change, such as a boundary layer or a shock. The second belief
is that, with proper modeling of the integral and differential forms themselves, the
resulting numerical solution should automatically be consistent with the properties
derived from the integral and differential forms, e.g., the jump conditions across
a shock and the properties of characteristics. Therefore a much simpler and more
robust method can be developed by avoiding the explicit use of the above derived
properties. Specifically, to capture physics as fully as possible, the method requires
that: (i) space and time be unified and treated as a single entity; (ii) both local and
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global flux conservation in space and time be enforced; and (iii) a multidimensional
scheme be constructed without using the dimensional-splitting approach, such that
multidimensional effects and source terms (which are scalars) can be modeled more
realistically. To simplify mathematics and broaden its applicability as much as pos-
sible, the method attempts to use the simplest logical structures and approximation
techniques. Specifically, (i) it uses a staggered space-time mesh such that flux at
any interface separating two conservation elements can be evaluated internally in
a simpler and more consistent manner, without using a separate flux model; (ii) it
avoids the use of many well-established techniques such as Riemann solvers, flux
splittings, and monotonicity constraints such that the complications and possibly
even the limitations associated with them may be avoided; and (iii) it avoids the use
of special techniques that are not applicable to more general problems. Furthermore,
triangles in 2D space and tetrahedrons in 3D space are used as the basic building
blocks of the spatial meshes, such that the method (i) can be used to construct 2D
and 3D nondissipative schemes in a natural manner; and (ii) is compatible with the
simplest unstructured meshes. Note that while numerical dissipation is required for
shock capturing, it may also result in annihilation of small disturbances such as
sound waves and, in the case of flow with a large Reynolds number, may overwhelm
physical dissipation. To overcome this difficulty, two different and mutually comple-
mentary types of adjustable numerical dissipation are introduced in the present deve-
lopment.  © 1999 Academic Press

Key Wordsspace-time; flux conservation; conservation element; solution element;
shocks; contact discontinuities.

1. INTRODUCTION

Since its inception in 1991 [1], the space-time conservation element and solution elen
method (the CE/SE method) [1-25] has been used to obtain highly accurate nume
solutions for 1D, 2D, and 3D flow problems involving shocks, contact discontinuitie
vortices, acoustic waves, boundary layers, chemical reactions and hydraulic jump.
method can be applied to both steady and unsteady flow fields in different speed rat
(subsonic, transonic, and supersonic). It is also genuinely multidimensional and compat
with unstructured meshes in both 2D and 3D [12—-14]. To answer frequently-asked quest
and clarify possible misconceptions, we shall begin this paper with an overall view of 1
CE/SE method.

Before proceeding, note that in the present paper the reader will often be referre
[7] for the details that are not presented here. This practice is required by the nee
cut down the length of this manuscript. To lessen the inconvenience, the paper [7
posted on and can be downloaded from Section Technical Details of the CE/SE web
http://www.grc.nasa.gov/www/microbus. Furthermore, the reader can also obtain the t
copies of [7] and other CE/SE related papers by sending e-mail to the first author.

Currently, the field of computational fluid dynamics (CFD) represents a diverse collecti
of numerical methods, with each of them having its own limitations. Generally speakir
these methods were originally introduced to solve special classes of flow problems. De
opment of the CE/SE method is motivated by a desire to build a brand new, more gen
and coherent numerical framework that avoids the limitations of the traditional method:

The CE/SE method was first published in this journal in 1995 [2]. It was shown in [2] th
a simple CE/SE scheme is highly accurate in solving Sod’s shock-tube problem. Rece
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the accuracy of this scheme in solving Harten’s shock-tube problem was also evalt
against other schemes by Battenal. [3]. They concluded that “the result. is quite

remarkable, considering that the internal details of the Riemann fan are never used
indeed, are never needed, because the entire Riemann fan is contained within the reg
integration.” They went on to conclude that “in fact, solutions produced with this scheme
broadly comparable to conventional MUSCL schemeg This conclusion is echoed by
the results of arecent accuracy study of a CE/SE solver for the Saint Venant equations |

The new method is built on a set of design principles that were discussed and justifie
[2]. They include: (i) enforcing both local and global flux conservation in space and tir
with flux evaluation at an interface being an integral part of the solution procedure |
requiring no interpolation or extrapolation; (ii) unifying space and time and treating th
as a single entity; (iii) considering mesh values of dependent variables and their deriva
as independent variables, to be solved for simultaneously; (iv) using only local disc
variables rather than global variables like the expansion coefficients used in spectral r
ods; (v) defining conservation elements and solution elements such that the simplest s
will result; (vi) requiring that, as much as possible, a numerical analogue be constru
so as to share with the corresponding physical equations the same space—time inv
properties, such that numerical dissipation can be minimized [9]; (vii) excluding the usi
characteristics-based techniques (such as Riemann solvers); and (viii) avoiding the U
ad hoc techniques as much as possible.

Moreover, the development of the CE/SE method is also guided by two basic bel
that set it apart from the established methods. The first belief is that, in order to car
physics more efficiently and realistically, the modeling focus should be placed on the orig
integral form of the physical conservation laws, rather than the differential form. The la
form follows from the integral form under the additional assumption that the physi
solution is smooth, an assumption that is difficult to realize numerically in a region of ra
change, such as a boundary layer or a shock. The second belief is that, with proper moc
of the integral and differential forms themselves, the resulting numerical solution shc
automatically be consistent with the properties derived from the integral and differer
forms, e.g., the jump conditions across a shock and the properties of characteristics. In
words, a much simpler and more robust method can be developed by avoiding the ex
use of the above derived properties.

It will be shown in Section 2 that the spatial meshes used in the new 2D CE/SE sche
to be described are built from triangles (in such a manner that the resulting meshe:
completely different from those used in the finite element method). As a result, th
schemes are (i) compatible with the simplest unstructured meshes [13] and (ii) constrt
without using the traditional dimensional-splitting approach. Note that the dimensior
splitting approach is flawed in several respects [26]. In particular, because a source te
not aligned with a special direction, it is difficult to imagine how this dimensional-splittir
approach, in alogically consistent manner, can be used to solve a multidimensional pro
involving source terms, such as those modeling chemical energy release [15-17].

Moreover, because the CE/SE 2D schemes share with their 1D versions the same ¢
principles, not only is the extension to 2D a straightforward matter, each of the new
schemes also shares with its 1D version virtually identical fundamental characteristics

At this juncture, note that monotonicity conditions are not observed by general f
fields, e.g., those involving ZND detonation waves [15,16]. For this reason and the fact
their use may introduce excessive numerical dissipation, technigues involving monoton
constraints so far have not been used in the CE/SE development.
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To give the reader, in advance, a concrete example that demonstrates the validity of the
basic beliefs referred to earlier, an extended Sod'’s shock tube problem is considered |
This extended problemis the original Sod’s problem [27] with the additional complication
imposing a nonreflecting boundary condition at each end of the computational domain. N
that the flow under consideration contains discontinuities and, relative to the computatic
frame, is subsonic throughout. It is well known that implementing a nonreflecting bound:
condition for a subsonic flow is much more difficult than doing the same for a superso
flow. This difficulty is further exacerbated by the fact that the traditional nonreflectir
boundary conditions [28], such as those using the properties of characteristics, are all b
on an assumption thatis notvalid for the present case, i.e., that the flow is continuous. In ¢
ofthe factthat the extended problem is substantially more difficult than the original proble
the former can be solved by a simple CE/SE scheme that is explained in Section 2.8 of
The main loop of the Fortran program (listed in Appendix A of [7], and also on pp. 229-2:
of [6]) implementing this scheme contains only 39 Fortran statements, with none of th
calling any subprogram or using any function defined outside the loop. Not only is it ve
small in size, but this program has a very simple logical structure. With the exception c
single “if” statement used to identify the time levels at which the nonreflecting bounde
conditions must be imposed, it contains no conditional Fortran statements or functions <
as “if,” “amax,” or “amin” that are often used in programs implementing high-resolutio
upwind methods. The small size of the program reflects the simplicity of the techniqt
employed by the CE/SE method to capture shock waves. It also results from the fact tha
nonreflecting boundary conditions used in the present solver are the simple extrapole
conditions: (i)

U = (Um)] 15 and (Umd} = Um0 173, M=123 n=123..., (11

if (j, n) is a mesh point on the right spatial boundary (see Fig. 1); and (ii)
U = (U715 and Umd} = Umo 375 M=123 n=123..., (12)

if (j,n) is a mesh point (a dot in Fig. 1) on the left spatial boundary (n(ug)’j‘ and
(umx)’j‘ are the independent numerical variables at the mesh ppinj [2]). On the other
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FIG. 1. The staggered space-time mesh.
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FIG. 2. The CE/SE solution of the extended Sod’s problem with boundary conditions Egs. (1.1) and (
(At =0.004 Ax=0.01, CFL~0.88).

hand, the absence of Fortran conditional statements is a result of avoiding the use
hoc techniques. In spite of its simplicity, according to the comparisons of the numer
results (including the right and left boundary values and denoted by triangles) and the ¢
solutions (denoted by solid lines) shown in Figs. 2(a—c) (see [7] for velocity and pres:
profiles), the present solver is capable of generating nearly perfect nonreflecting solut
Note that, at =10, the exact solution is constant across the computational domain. |
shown in [7] that the maximum numerical errors in density, velocity, and pressure are
less than 5% of the exact values.

Note that Egs. (1.1) and (1.2) represent only one of many sets of simple and ro
nonreflecting boundary conditions developed in [19] for the CE/SE method. Behind
development is a new concept based entirely on an assumption about the space-tim
distribution in the neighborhood of a spatial boundary. As it turns out, the new conc
leads to the surprising conclusion that, albeit of lower order of accuracy, the steady-
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FIG. 3. The CE/SE solution of the extended Sod’s problem with boundary conditions Eq. (1t3} (
0.004 Ax=0.01, CFL~0.88).

boundary conditions
U] = Um){ and Umd] = Umo). M=123n=123.., (13

where(j, n) is any mesh point on the right or left boundary, are also nonreflective if the
are applied in conjunction with the CE/SE method. The density profiles-&4 and 06,
computed using an alternative solver that is identical to the solver referred to earlier ex
that the boundary conditions Egs. (1.1) and (1.2) are replaced by Eq. (1.3), are comp.
with the exact solutions in Fig. 3a and 3b (see [7] for the velocity and pressure profiles). N
that, att = 0.2, the numerical solutions generated by the alternative and the original solv
are identical. According to Fig. 3a, by the time- 0.4, the shock wave has passed cleanly
through the right boundary. There is good agreement between the numerical solution
the exact solution everywhere in the interior except for a slight disagreement in the vicir
of the right boundary. Note that the right boundary values, which do not vary with tim
are discontinuous with respect to the neighboring interior values. According to Fig. -
by the timet = 0.6, the contact discontinuity has also passed through the right bounde
Agreement between the numerical solution and the exact solution continue to be good ir
interior. However, both left and right boundary values are now discontinuous with resp
to the neighboring interior values.

Note that several recent applications [20, 21, 25] of the CE/SE method to 2D aeroacou:
problems reveal that: (i) the trivial nature of implementing CE/SE non-reflecting bounde
conditions is manifested even for 2D problems; (ii) accuracy of the numerical results
nonlinear Euler problems is comparable to that of a fourth to sixth order compact differel
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scheme, even though nominally the CE/SE solver used is only of second-order accu
and (iii) most importantly, the CE/SE method is capable of accurately modeling both sr
disturbances and strong shocks. The following comments are for items (ii) and (iii):

(a) Assumingthe same order of accuracy, generally speaking, the accuracy ofasc
that enforces the space—time flux-conservation property is higher than that of a schem
does not. Acompact scheme generally does not enforce the flux-conservation property
nonlinear Euler equations. On the contrary, not only is the present scheme flux-conser
its accuracy in nonlinear calculations is enhanced by its surprisingly small dispersive e
[2, 20, 21, 25]. Moreover, the nominal order of accuracy of a Euler solver is determi
assuming a linearized form of the Euler equations and that the solution is smooth. T
its significance with respect to a nonlinear and/or nonsmooth solution of the full EL
equations may be questionable. As a matter of fact, it was shown by Casper and Carf
[29] that, for the unsteady Euler equations, solutions generated by high-order sche
(including ENO schemes) generally are only first-order accurate downstream of a sho

(b) While numerical dissipation is required for shock resolution, it may also resul
annihilation of small disturbances such as sound waves. Thus, a solver that can handle
small disturbances and strong shocks must be able to overcome this difficulty.

To pave the way for the later 2D developments, next we shall briefly discuastieme
(i.e., the inviscid version of the-u scheme [2]) and its role in the CE/SE development. T
proceed, note that: (i) the- . scheme is a solver of the PDE

du  du 9%u

ot aB_X — ,uﬁ =0, (1.4)
wherea andu > 0 are constants; and (ii) tllescheme is nondissipative (note: to the be:
knowledge of the authors, tleescheme is the only two-level, explicit, and nondissipativ
solver of Eq. (1.4) withu = 0). Because tha-u scheme reduces to tlhescheme when the
viscosityu = 0, it follows from (i) and (ii) that thea-u scheme has the important property
that the numerical dissipation of its solutions approaches zero as the physical dissip
approaches zero. Note that, in principle, the nagging problem of physical dissipation b
overwhelmed by numerical dissipation in a nearly inviscid problem can be overcome
using a scheme that possesses the above property. Obviously the development of <
scheme must be preceded by that of a nondissipative scheme suclaaskieme.

The problem of physical dissipation being overwhelmed by numerical dissipation d
notexistfora pure convection problem. However, as explained inthe earlier discussion
the delicate nature of simulating small disturbances in the presence of shocks, nume
dissipation must still be handled carefully in this case. For this reasora-thecheme
[2] was built from thea scheme so that the numerical dissipation of its solutions can
controlled by the parameter Again thea-¢ scheme reduces to tikescheme when =0.

Note that numerical dissipation traditionally is adjusted by varying the magnitude
added artificial dissipation terms. However, after being stripped of these added artif
dissipation terms, almost every traditional scheme is still not free from inherent numel
dissipation. Hence, numerical dissipation generally cannot be avoided completely usin
traditional approach.

Finally, note that a thorough discussion about the key differences between the Ck
method and other established methods is given in Section 1 of [7].
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2. GEOMETRICAL DESCRIPTION OF CONSERVATION ELEMENTS
IN TWO SPATIAL DIMENSIONS

In [2, 7], it was established that, for each 1D CE/SE solver, there wdrengependent
marching variables per mesh point with being the number of conservation laws to be
solved. Becaus®! conservation conditions are imposed over each conservation elem
(CE), two CEs were introduced at each mesh point such that both tteestbeme and
the 1D Eulera scheme [7] can be constructed by solving tih& 2onservation conditions
imposed at each mesh poitjt n), for the 2V variables associated with the mesh point.

As will be shown in the following sections, for each 2D CE/SE solver, there te 3
independent marching variables per mesh point. As a result, three CEs need to be de
at each mesh point. In this section, only the basic geometric structures of these CEs wi
described.

Consider a spatial domain formed by congruent triangles (see Fig. 4). The center of
triangle is marked by either a hollow circle or a solid circle. The distribution of these hollo
and solid circles is such that if the center of a triangle is marked by a solid (hollow) circ
then the centers of the three neighboring triangles with which the first triangle sharesits tf
sides are marked by hollow (solid) circles. As an example, ®jiihe center of the triangle
ABDF, is marked by a solid circle while poini, C, andE, the centers of the triangles
AFMB, ABJD, andADLF, respectively, are marked by hollow circles. These centel
are the spatial projections of the space—time mesh points used in the 2D CE/SE solvel

To specify the exact locations of the mesh points in space-time, one must also spe
their temporal coordinates. In the 2D CE/SE development, again we assume that the r
points are located at the time levels=0, £1/2, +1, £3/2, ..., with t =nAt at thenth
time level. Furthermore, we assume that the spatial projections of the mesh points

FIG. 4. A spatial domain formed from congruent triangles, showing the spatial projections of the mesh poir
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FIG.5. (a) The CEs associated wi, (b) the CEs associated wi€l’, and (c) the relative positions of the
CEs of successive time steps.

whole-integer (half-integer) time level are the points marked by hollow (solid) circles
Fig. 4.

Let the triangles depicted in Fig. 4 lie on the time lenet 0. Then those points marked
by hollow circles are the mesh points at this time level. On the other hand, those pc
marked by solid circles are not the mesh points at the time texed. They are the spatial
projections of the mesh points at half-integer time levels.

Points A, C, andE, which are depicted in Figs. 4 and 5a, are three mesh points at
time leveln =0. PointG’, which is depicted in Fig. 5a, is a mesh point at the time lev
n=1/2. Its spatial projection at the time level=0 is pointG. Because poinG is not a
mesh point, it is not marked by a circle in the space-time plots given in Figs. 5a and
Hereafter, only a mesh point, e.g., po@t, will be marked by a solid or hollow circle in a
space-time plot.

The CEs associated with a mesh point at a half-integer time level, such as3came
defined to be the space—time quadrilateral cylindeFSABGF' A'B’, GBCDGB'C'D’,
andGDEFGD’E'F'. Similarly, the CEs associated with a mesh point at a whole-integ
time-level, such as poinC”, are the quadrilateral cylinder€' J’K’'D’'C”"J"K"”D”,
C'D'G'B'C"D"G”B”, andC’'B’'l'J'C”"B”1"”J” (see Fig. 5b). The relative space-time po
sitions of the six CEs associated with mesh potandC” are depicted in Fig. 5c.

Note that (i) pointA, C, E, andG are the geometric centers of four neighboring congrue
trianglesAFMB,ABJD, ADLF,andABDF, respectively; and (ii) among those depicte
in Fig. 4, any pair of triangles sharing a common side forms a parallelogram. As a re:
one concludes that

(a) CD, GE, BG, andAF are parallel line segments of equal length.
(b) AB, GC, FG, andED are parallel line segments of equal length.
(c) BC, GD, AG, andFE are parallel line segments of equal length.
(d) PointG is the geometric center of the hexaghB C D E Fand the triangléAC E.
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Finally note that, because the hexadg®hJ K DG (depicted in Fig. 4) is congruent to the
hexagonABC DEF, a set of geometric relations similar to those listed above also exis
for the vertices and the center of the hexaddin] K DG.

3. THE 2D a SCHEME
In this section, we consider a dimensionless form of the 2D convection equation, i.e.

au au au

— +a— +ay,— =0, 3.1

ot T B T ay (3.1)
wherea, anday are constants. Let, = X, X, =y, andxz =t be the coordinates of a three-
dimensional Euclidean spaédgs. By using Gauss’ divergence theorem in the space-tim
Es, it can be shown that Eq. (3.1) is the differential form of the integral conservation lav

f h-ds=0. (3.2)
S(V)

Here, (i)S(V) is the boundary of an arbitrary space-time regibim Eg, (ii)
h % (axu, ayu, u) (3.3)

is a current density vector i&3, and (iii) ds=do n with do andn, respectively, being
the area and the outward unit normal of a surface eleme®(dn. Note that (i)h - dsis
the space-time flux dfi leaving the regiorV through the surface elemeds, and (ii) all
mathematical operations can be carried out as th&ggtere an ordinary three-dimensional
Euclidean space.

In the following analysis, the nontraditional space-time mesh that was sketched
Section 2 will be rigorously defined. To proceed, the spatial projections of the mesh pol
depicted in Fig. 4 are reproduced in Fig. 6. Note that the dashed lines that appear in F
are the spatial projections of the vertical interfaces (see Figs. 5a—c) that separate diffe
CEs. Also note that, as a result of the geometric relations listed at the end of Section 2,
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FIG. 6. The relative spatial positions of the mesh poiat§2; and the mesh points 2, (dashed lines are
spatial boundaries of the conservation elements depicted in Figs. 9a and 10a).
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FIG. 7. The spatial mesh indiceg,(k) of the mesh pointg Q;(n=+1/2, +3/2, £5/2, - - ).

dashed line can point only in one of three different fixed directions. We assume that
congruent triangles depicted in Fig. 4 are aligned such that one of the above fixed direc
is thex-direction.

Each mesh point marked by a solid or hollow circle is assigned a pair of spatial indi
(j, k) according to the location of its spatial projection. Obviously, a mesh point can
uniguely identified by its spatial indic&g, k) and the time leveh where it resides. Ac-
cording to Figs. 7 and 8, the spatial projections of the mesh points that share the same
of j (k) lie on a straight line on the—y plane with this straight line pointing in the direction
of thek- (j-) mesh axis.

(39 L, Y
Bl G
(39 N0 Y
I P I N

FIG. 8. The spatial mesh indice$,(k) of the mesh pointg Q,(n=0, +£1, +2, -- ).
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CEq (i, k, n) = box GFABGF'A'B SE (j, k, n) = the union of four

CE2 (j, k, n) = box GBCDG'B'C'D"  planes AB'CDEF’, GBB"G",

CEj (i, k, n) = box GDEFG'D'EF GDD”G", and GG"F"F and their
immediate neighborhoods.

G =,k n) € 04,

=i+ L 1 ‘afi- L 2 mfie 2 1
A-(j+3,k+3,n), B'={ 3,k-l»3,n), C=( 3,k~¢-3,n),
P | 1 o1 2 . 2 1
D'=(--,k~-—,n), =(+—,k-<,n), = LK==,
(13k3n)E(j+3k3n)F(j+3k3n)

FIG. 9. (a) Conservation elementSE (j, k,n),r =1, 2,3, for any (j, k,n) € ©;. (b) Solution element
SHKj, k, n) forany (j, k, n) € Q;.

Let
t"E AL, n=0 41/2, +1, +3/2, .. .. (3.4)

Let j andk be spatial meshindiceswifhk =0, £1/3, £2/3, 41, .. .. LetQ; denote the set
of mesh pointgj, k, n) with j, k=0, +1, +2, ..., andn=41/2, +3/2, +5/2, .... These
mesh points are marked by solid circles. Eetdenote the set of mesh poirts k, n) with
j,k=1/3,1/3+1,1/3+2,..., andn=0, £1, &2, .... These mesh points are marked
by hollow circles. The union of2; and$2, will be denoted by.

Each mesh pointj, k, n) € Q is associated with (i) three conservation elements, denote
by CE (j,k,n),r =1, 2, 3 (see Figs. 9a and 10a); and (ii) a solution element, denoted |
SK(j, k, n) (see Figs. 9b and 10b). Note that &} can be filled with the CEs defined
above; (ii) the boundary of a CE is formed by the subsets of two neighboring SEs; ¢
(iii) the CEs and the SE associated with a mesh pojnk, n) € ; differ from those
associated with a mesh poifit, k, n) € 2, in their space-time orientations.

By using the geometric relations listed at the end of Section 2, one can conclude that
spatial coordinates of the vertices of the hexag§®1 D E F, which appears in both Figs. 9a
and 10a, are uniquely determined by three positive parametdrsandh (see Fig. 11a)
if (i) one assumes thad A is aligned with thex-direction and (ii) the spatial coordinates
of point G (the centroid of the hexagon) are given. Note tlhab, andh, respectively, are
the lengths of the line segmersM, MH, andBH with (i) DM being a median of the
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CE; (i, k, n) = box GCDEG'C'DE’ SE {j, k, n} = the union of four

CEs (j, k, n) = box GEFAG'EFA’ planes AB'C'D’EF’, GG"A"A,

CEj {j, k, n) = box GABCG'A'BC’ GCC”G”, and GG"E"E and their
immediate neighborhoods.

G'=(, k, n) € Qg

A=+ 1 cmi- L 2 o2 1
—0+3,k+3,n), B = 3,k+-3,n), C = 3,k+3,n),
o_p 1 1 v, 1 2 . . 2 1

D'=(j~— k-1 =(+—, k==, n), = VR B

1] 3,k 3,n), E (j+3,k 3 n), F (j+3 k 3 n)

FIG. 10. (a) Conservation elementSE (j, k,n),r =1, 2, 3, for any (, k, n) € 2,. (b) Solution element
SE(j,k,n) forany (j, k, n) € Q,.

triangleABDF and (i) pointsG, M, andH being on the line segmemA. Also note that
a dashed line in Fig. 6 may appear in other figures as a solid line.

Let the space-time mesh be uniform, i.e., the parametérs, b, andh are constants.
Let x; k andy; k be thex- andy-coordinates of any mesh pointg k, n) e Q. Letxgo =0
andyp o= 0. Then information provided by Figs. 11a and 11b implies that

Xjk = +kw+ k- ]b, yjx=(k-]h (3.5)
For any(x, y,t) € SK(j, k, n), u(x, y, t) andh(x, y, t), respectively, are approximated by
def

U Y, 6 ko) = 4 (W0 (X = X0+ (U (y = Vi) + U]t =t (3.6)
and
h*(xv yv t7 j) k’ n) dzEf[a)(U*(Xv y» t; js kv n)7 ayU*(Xs ya t; js kv n)7 U*(Xv yv t; j7 ks n)]v
(3.7)

Whereu';,k, (Ux)?,k, (uy)?ﬁk, and(ut)’j‘qk are constants within SE, k, n). Note that Eq. (3.7)
is the numerical analogue of Eq. (3.3).
u=u*(x,Vy,t; j, k, n)is required to satisfy Eq. (3.1) within $SE k, n). Thus,

(Ut)rj‘,k = - [ax(ux)?,k + ay(uy)rj],k]- (3.8)
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a . (Xjx+b- g Yix +h (Xx+b+ ‘% Yk +h) [BM| = w
AB// DE// CF

BC // EF // DA

CD // FA // BE

Xk =D =% ik =h) Xik=b+%, yix-h)

- 1Az (-1 Al
(=388 (- D amp

G+ )AL, k- §) Av) -+ §)Ac, k- 3) an)

FIG. 11. Geometry of the hexagopABCDEF. (a) Relative positions of the vertices in terms &f ¥).
(b) Relative positions of the vertices in terms §fK). (c) Relative positions of the vertices in terms(of n).
Equations (3.6) and (3.8) imply that

U, Y, 6, ko n) = Ul U0 [(X = X0 — ax(t —tT)]
+ (Uy)rj],k [(y - Yj,k) - ay(t - tn)} . (3-9)

Thus, there are three independent marching variablesu?.,@,,(ux)j{k, and(uy)'j*,k as-
sociated with a mesh poirt, k, n) € Q. For any(j, k, n) € 1, these variables will be
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. 1 1
LK+~ n-—
\ N v 33T
\ /
\ \ )
\ \\ 7/
\\o— ——————— \_\‘// ;
et k-2 -1
(|+3,k 3" 3
1 2 1
- k+< n-L
b I-gk+zn-3)
//‘\_" ——————— 1\/'(
// \\\ y
/ \\ \
// (jrkrn) \\
-3 k-t n-Ly¢ oS 3 x
3 3 2 ‘ /
e /
\ /
\ -~
; Ve
\ ,
\\‘ ’ // \.
________ J
. 2 1 1
i+ k-3n-2)

FIG. 12. (a) The mesh pointsj(k, n), (j +1/3,k+1/3,n—1/2), (j —2/3,k+1/3,n—1/2) and (j +
1/3,k—2/3, n—1/2) that belong t&2,. (b) The mesh point§, k, n), (j —1/3,k—1/3,n—1/2), (j +2/3,k—
1/3,n—1/2), and(j — 1/3, k+2/3, n — 1/2) that belong ta2,.

determined in terms of those associated with the mesh p@jintsl/3, k+1/3,n—1/2),
(j—2/3,k+1/3,n—1/2), and(j +1/3,k—2/3,n—1/2) (see Fig. 12a) by using the
three flux conservation relations

7{ h*.ds=0, r =123 (3.10)
JS(CE (j,k,n))

Similarly, the marching variables at ary, k, n) € 2, are determined in terms of those
associated with the mesh poirits— 1/3,k—1/3,n—1/2), (j +2/3,k—1/3,n—1/2),
and(j —1/3, k+2/3, n—1/2) (see Fig. 12b) by using the three flux conservation relatiot
Eg. (3.10). Obviously, Eq. (3.10) is the numerical analogue of Eq. (3.2).

As a result of Eq. (3.10), the total flux leaving the boundary of any CE is zero. Beca
the flux at any interface separating two neighboring CEs is calculated using the informe
from a single SE, the flux entering one of these CEs is equal to that leaving anothe
follows that the local conservation conditions Eq. (3.10) will lead to a global conservat
condition, i.e., the total flux leaving the boundary of any space-time region that is the ur
of any combination of CEs will also vanish.

In the following, several preliminaries will be given prior to the evaluation of Eq. (3.1(
To proceed, note that a mesh line witlandn being constant or a mesh line wiktandn
being constant is not aligned with tikeaxis or they-axis. We shall introduce a new spatial
coordinate systen;, n) with its axes aligned with the above mesh lines (see Fig. 11c).

Let e, andey be the unit vectors in th_&; and t_h)ey—directions, respectively. L& and
e, be the unit vectors in the directions of ¥d DB(i.e., thej- and thek-directions—see
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Figs. 11a—11c), respectively. Let the origin (©f y) also be that of¢, n). Then, at any
point in Ez, the coordinategz, n) are defined in terms ak, y) using the relation

l€e + ne, = Xe + yey. (3.11)

Using the above definition, it can be shown that [7]

(3)=1() e () =mC)

with
w—b w+b AL (w+b)AL
def [ A A _1def [ 2w T 2wh
TE "] and TOIE| 2 zh o) (3.13)
_h h Anp  (w—h)Ap
AC An 2w 2wh
Here,

ACEDFI=vVw-b2+h2 and AnEDBl=(w+b2+h2 (3.14)

With the aid of Egs. (3.5), (3.12), and (3.13), it can be shown that the coordiigatgs
of any mesh poingj, k, n) € Q are given by

¢ =JjA¢, and n=kAn; (3.15)

i.e., Az andAn are the mesh intervals in tlge and then-directions, respectively.
Next we shall introduce several coefficients that are tied to the coordinate sistem

Let
(af) d:‘*le(aX). (3.16)
a, ay

(up)f (u)f
< ‘ "k> d=eth< " "k>, (3.17)
(Up)k (Uy)] k
whereT! is the transpose of . Equations (3.8), (3.9), (3.12), (3.13), (3.16), and (3.17
imply that

Also, for any(j, k, n) e , let

U = —[a; U) ] +a,uy)T] (3.18)
and

u*(x, y,t; j, k,n) = u*(g, n, t; j, k, n), (3.19)

where

U@t ko) Eut 4+ U)D [(€ — JAD) —ac(t —t")]
+ U [(n — kAn) —a,t —tM)]. (3.20)
Next, let (i)
def 3At def SAL

—a;, an —a, 3.21
= oAk APy (3.21)



THE SPACE-TIME CE/SE METHOD 105

and (ii)

fAC n def

uhHt £ & U]k and uH], = %(u,,)?k. (3.22)
The coefficients defined in Egs. (3.21) and (3.22) can be considered as the norma
counterparts of those defined in Egs. (3.16) and (3.17). Furthermore, bécaardAn are
the mesh intervals in the- andn-directions, respectively, Eq. (3.21) implies tk§af3)v,
and (2/3)v,, respectively, are equal to the Courant numbers insthand n-directions,
respectively.

Furthermore, to simplify the following development, let

(. kLDE +1/3k+1/3, (k2 DEj-1/3 k-1/3 (3.23)

(. k1L2Ej—2/3k+1/3, (j.k22%j +2/3,k-1/3 (3.24)

(. k1,3%j +1/3 k—2/3, (j,k:23%j —1/3 k+2/3. (3.25)
Note that (i)(j,k; 1,r), r =1, 2, 3, are the spatial mesh indices of poiftsC, and E
depicted in Fig. 9a, respectively, and (ij) k; 2,r),r =1, 2, 3, are the spatial mesh indices
of pointsD, F, andB depicted in Fig. 10a, respectively.

Equation (3.10) is evaluated in Appendix B of [7]. The evaluation is facilitated by t
following observations: (i) the boundary of each CE is formed by six quadrilaterds in
with each quadrilateral belonging to a single SE (see Figs. 9 and 10); and (ii) bec
u*(x, y,t; j, k,n)is linear inx, y, andt (see Egs. (3.9)), Eq. (3.7) implies that, for an
r=1,2, 3, the total flux ofh* leaving CE(j, k, n) through any one of its six boundary
quadrilaterals is equal to the scalar product of the vett@valuated at the centroid of the
quadrilateral and the surface vector (i.e., the unit normal multiplied by the surface are:
the quadrilateral. Legj, k, n) € Qq with =1, 2. Then, for any =1, 2, 3, the result of
evaluation can be expressed as

n—1/2

[ar(fHu + U(q)+u+ + U(qHuﬂ ?J( = [ar(g)fu + 0 UJr + O'(q) uﬂ Gkan’ (3.26)
where the coefficients ¥+ (q =1, 2 andr, s=1, 2, 3) are defined by
oPEL v, oPEE 4y 4, (3.27)

o PFL LA — v —v)A+ ), o PFEFA v +v)A—v)  (3.28)

o Qv —v)A v, o EFA+ v vy (3.29)
obx defy 4 ), v, o2* def, _ " (3.30)

oD def (14 V)2 = ve), o2* e 1— ve) (24 ve) (3.31)

o EEL+ v A4y, o EFA-v) - ) (3:32)

G(l)i def t,, U(Z)i defy _ (3.33)

oL LA+ v)A+1,), o2* def:F(l v (L — ) (3.34)

and

ol def -1 4+ 1)@ —vy), ol2* e 1— V) (24 vy). (3.35)
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Note that, to simplify notation, in Eq. (3.26) and hereafter we adopt a convention that
be explained using the expression on the left side of Eq. (3.26) as an example; i.e.,

[ (q)+u + O,(q)+ + 4 U(q)+u+L L= O_r(g)+ ! + U(q)+(u « U(q)Jr(qu)

Let (i) L—v; —v, #0, (i) 1+v, #0, (iii) 1 +v, #0, (iv) 1+v; +v, #0, (V) 1— v, #0,
and (vi) 1— v, #0, i.e.,

[l — (v + v,,)z] (1 — vf) (1 — vg) #+0, (3.36)

then the six equationg|& 1, 2 andr =1, 2, 3) given in Eq. (3.26) can be simplified as

U+ @+ vouf + @+ vu 10 =57, (j.k.n) e (3.37)
[u—@—vouf + A+ vu 10 =", (j.k.n) e (3.38)
[u+ @+ vouf — @—vu 10 =", (j.k.n) e (3.39)
[u—@-vouf —@-vuTf=s? (.kn e (3.40)
U+ @+vouf — @A —vu 10 =, (j.k.n) e (3.41)

and
[u— @A —vouf + @+vuill, =2, (j.k.n) € 2, (3.42)

respectively. Here

sV LU — @+ vouf — @A+ U1y, Gk e (3.43)
P Eu+ @ —vouf — A+, (kem e (3.44)
sV €U~ @+ v + @— Uil (k) € 2 (3.45)
$? €U+ @ —v)uf + @A —vufll . (k) € 2 (3.46)
$2 €U — @+ v)uf + A — Uil e, (k) € 2 (3.47)

and
s? Eu+ @ —vuf — @+ Uil zs. (L kon) € (3.48)

The current 2Da scheme will be constructed using Egs. (3.37)—(3.42) without assumil
Eq. (3.36). Note that Egs. (3.37)—(3.42) imply Eq. (3.26) for anwndv,. However, the
reverse is false unless Eq. (3.36) is assumed.

For eitherg=1 or =2, by summing over the three equations-1, 2, 3 given in
Eq. (3.26) and using the properties

o+ o+t =3 q=12 (3.49)
and
ot o ol =t ot ot =0 q=12 (350
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one concludes that, for arty, k, n) € Qq,

3
1
n __ - @— + @— +
uj,k_gz:[arl u"i_OrZ u; +Gr3 un]
r=1

-1/2
(”J.,k;/q.r), q=12 (3.51)

Also, it follows from Egs. (3.37)—(3.42) that, for auy, k, n) € Qq,

DT = (UF)j, and ()= (U, (3.52)

where

(u?*)?’k dzefg (s? —s”) and (ufﬁ)T’k dﬁ% (s5V —s). (3.53)
Note that Egs. (3.37)—(3.42) are equivalent to Egs. (3.51) and (3.52).

The 2Da scheme is formed using Egs. (3.51) and (3.52). It has been shown numeric
that it is second order in accuracy Wk, (u:)?,k and(u,,)’j‘!k assuming that, andv, are
held constant in the process of mesh refinement (note: as a result of Eq. (3.22), dhe
scheme is third order accuracy(im;*)rj"k and(u;)?.k). Note that the superscript symbal™
in (u"g“’)rj"k and(uf"*)rj"k is introduced to remind the reader that Eq. (3.52) is valid for tf
2D a scheme.

The 2Da scheme shares with the Hscheme several nontraditional features. They a
summarized in the following comments:

(a) Asinthe case of the 1Bscheme, the 2[& scheme also has the simplest stenc
possible, i.e., a tetrahedron in 3D space-time with one vertex at the upper time level an
other three vertices at the lower time level.

(b) As in the case of the 1B scheme, each of the six flux conservation conditior
associated with the 2Bscheme, i.e., those givenin Eq. (3.26), represents a relation am
the marching variables associated with only two neighboring SEs.

(c) Asinthe case of the 1B scheme, the 22 scheme also is nondissipative if it is
stable. It is shown in Section 7 of [7] that the 23cheme is neutrally stable if

[vel <15, |v,| <15, and |v, +v,| <15 (3.54)

As depicted in Fig. 13, the domain of stability defined by Eq. (3.54) is a hexagonal reg
in thev,-v, plane.

(d) Itis shown in [10] that the 2@ scheme has the following property: i.e., for any
(J,k,nmeQ,

a(j,k,n+1) — q(j,k,n)asAt - 0 (3.55)

if ay, ay, w, b, andh are held constant. Herg j, k, n) is the column matrix formed by the
three marching variables at the mesh pdgintk, n) [7]. The 1Da scheme also possesse:
a similar property, i.e., Eq. (2.19) in [2]. The above property usually is not shared by of
schemes that use a mesh that is staggered in time, e.g., the Lax scheme [30, p. 74].

(e) Asin the case of the 1B scheme, the 2@ scheme is also a two-way marching
scheme; i.e., Egs. (3.37)—(3.42) can also be used to construct the backward time-mar
version of the 20a scheme [10].



108 CHANG, WANG, AND CHOW

(1.5, 0) / (1.5,0) >

7.
(0,-1.5)

FIG. 13. The stability domain of the 2@ scheme.

Note that the 2Ca scheme can also be expressed in terms of the marching variables
the coefficients tied to the coordinatées y). Here the coordinateg, n) are introduced
solely for the purpose of simplifying the current development (note: as an example, the pi
given in Appendix D of [7] that Eqg. (3.54) can be interpreted as the requirement that
physical domain of dependence of Eq. (3.1) be within the numerical domain of depende
would not be so simple if the coordinat&s n) were not introduced). The essence of the
2D a scheme, and the schemes to be introduced in the following sections, is not depen
on the choice of the coordinates in terms of which of these schemes are expressed.

4. THE 2D a-e SCHEME

In this section, the nondissipative 23cheme will be extended to become the dissipativ
2D a-¢ scheme.

To proceed, note that the CEs for the a2 scheme generally are not those associate
with the 2Da scheme. Here only a single CE is associated with a mesh goiatn) € Q.
This CE, denoted by C§, k, n), is the union of CE(j, k, n),r =1, 2, 3. In other words,

CE(j, k, n) £'[CEi(j, k, )] U[CEa(j, k, n)] U [CEs(j, k, m]. (4.1)

Instead of Eq. (3.10), here we assume the less stringent conservation condition

j'{ h* . ds= 0. (4.2)
S(CE(j,k,n))

Obviously, (i) E3 can be filled with the new CEs, and (ii) the total flux leaving the boundar
of any space-time region that is the union of any new CEs will also vanish.

Moreover, because of Eq. (4.1), Eq. (4.2) must be true if Eg. (3.10) is assumed. A
matter of fact, a direct evaluation of Eq. (4.2) reveals that it is equivalent to Eq. (3.51).
aresult, Eq. (3.51) is shared by the 23cheme and 2@-¢ scheme. In this section, the
2D a-¢ scheme will be constructed by modifying Eq. (3.52), the second equation @& the
scheme. As a prerequisite, we shall first construct certain central-difference analogue
ou/a¢ andau/an.
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To proceed, for anyj, k,n) € Qq,q=1, 2, let
def At n-1/2
UM eqn = (u + 7ut> _ ., r=123. (4.3)
(j.k:q.r)

By its definition,u’(?,k;q,r) is a Taylor series estimate ofat ((|, k; g, r), n). With the aid of
Egs. (3.18), (3.21), and (3.22), Eqg. (4.3) implies that

n-1/2
UM eqr = [U = 20uf +v,u)] (j,k;/q,r)‘ (4.4)

For bothg =1 andg =2, letP, Q, andR be the three points in then-u space with their
(i) ¢- andn-coordinates being those of the mesh poiitfsk; q,r),n — 1/2),r =1, 2, 3,
respectively, and (ii) thein-coordinates being’(?,k;q’r), r =1, 2, 3, respectively. It can be
shown that [7], at any point on the plane containing pout€), andR, we have

(g-?)n = (u‘;)';k and (g-:){ = (uﬁ)?k (4.5)
Here

(U)14 F D (U — Ukan)/AC (4.6)
and

()] E D0 (U ka3 — Ufkqn) /A (4.7)

As aresult of the above considerations, and the fact that the spatial projection of the
point(j, k, n) € 4 on the(n — 1/2)th time level is the centroid of the triangle formed with
the mesh pointg(j, k; g,r),n — 1/2),r =1, 2, 3, one concludes thatg ?,k and (u; ?,k
are central-difference approximationsaaf/d¢ andou/adn, respectively, at the mesh point
(J, k.

To proceed, for anyj, k, n) € 2, let

def AL def A7)
(U)W and ()}, ) o

Then the 2Da-¢ scheme is formed by Eq. (3.51) and

WD = (UEF)], +2e(ug" —uh)], (4.9)
and
UDT = (ugh)], +2e(ust —u3*)T (4.10)

wheree is an adjustable parameter.

Note that the expression on the right side of Eq. (4.9) contains two parts. The first pe
the nondissipative terru?* 7k (recall that the 22 scheme is nondissipative). The secon
part is the product of2and the difference between the dissipative central difference te
(u‘g*)rj‘,k and the nondissipative ter(m?*)']{k. Numerical dissipation is introduced by the
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second part. The expression on the right side of Eq. (4.10) can also be interpreted simil
Thus, numerical dissipation of the 2b¢ scheme can be adjusted upward by increasini
the value ofk.

Note that because the 28¢ scheme does not reduce to the alBcheme except in
the special case= 0, at each mesh poiitf, k, n) € 2, generally the 2[x-¢ satisfies only
the single conservation condition Eg. (4.2) rather than the three conservation conditi
Eq. (3.10). However, becaugﬂag“r anduih) generally are present on the right sides
of Egs. (4.9) and (4.10), respectively, the aE2 scheme generally will still be burdened
with the cost of solving three conservation conditions at each mesh point. The exc
tion occurs only for the special case=1/2 under which Egs. (4.9) and (4.10) reduce to
UH = WUgHT and(uhH)? = usHT,, respectively.

This section is concluded with the following remarks:

(a) The stability domain of the 2B-¢ scheme on the,-v, plane is essentially that
depicted in Fig. 13 if e <1 [7].

(b) Itis explained in [7] that the 2B@-¢ scheme witle > 0 is second order in accuracy
for uf  and first order in accuracy fau,)}, and(u,)}, assuming that,, v,, ande are
held constant in the process of mesh refinement.

(c) A more advanced scheme, referred to as thezBx-8 scheme, is described in
[7]. This scheme is constructed by using a procedure similar to that used to construct
2D Eulera-¢-a-8 scheme which will be described in Section 5.

5. THE EULER SOLVERS

We consider a dimensionless form of the 2D unsteady Euler equations of a perfect
Let p, u, v, p, andy be the mass density-velocity componenty-velocity component,
static pressure, and constant specific heat ratio, respectively. Let

Up=p, Uz=pU, Uz=pv, Us=p/(y — 1)+ pU*+2v%/2 (5.1)
fX=up f=us =1 =umus/u (5.2)
= (¥ — Dus+ 3— y)(U2)?/(2u1) — (¥ — 1) (uz)?/(2uy) (5.3)
f; = yuua/us — (1/2)(y — Duz[(U2)? + (Uz)?] /(up)? (5.4)
f§ = (y — Dua+ (3 — y)(U3)?/(u1) — (¥ — 1)(u2)?/(2u1) (5.5)
and
f] = yusus/us — (1/2)(y — Dug[(u2)? + (uz)?] /(up)? (5.6)

Then the Euler equations can be expressed as

dum  OfX  9fY

— — =0, m=1223,4 (5.7)
ot ax ay

Assuming smoothness of the physical solution, Eq. (5.7) is a result of the more fundame
conservation laws

hm-ds=0, m=1,23 4, (5.8)
S(V)
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where

hm=(f3, f¥.um), m=1,2234 (5.9
are the space-time massmomentum componeny-momentum component, and energy
current density vectors, respectively.

As a preliminary, let

x def
fm[ -

afXfou,, and f), LY /ou, m =123 4 (5.10)
The Jacobian matrices, which are formedfgy, and f; ,. m, £=1, 2, 3, 4, respectively,
are given in [10].

Becausef X and Y, m=1, 2, 3, 4, are homogeneous functions of degree 1 [31, p. 11]
Uy, Uy, Uz, andus, we have

4

fr=> fxu. and f)= Z fh, Ue. (5.11)

=1 =1

Note that Eq. (5.11) is not essential in the development of the CE/SE Euler solvers t
described in the following subsections. However, in certain instances, it will be use
recast some equations into more convenient forms.

Before proceeding, note that Section 2 of [7] is devoted to (i) reviewing and reformulat
the 1D schemes described in [2] and (ii) filling a gap in the derivation of Eq. (4.28) in [2]. N
only does the reformulation enable the reader to see more clearly the structural simil
between the 1D solvers of Eq. (1.1) with= 0 and their Euler counterparts, it also make
it easier for the reader to appreciate the consistency between the construction of th
CE/SE Euler solvers and that of the 2D Euler solvers to be described immediately.

5.1. The 2D Euler a Scheme

Forany(x, y, t) € SE(j, k, n),um(X, y, 1), fa(x, y, 1), f(X, y, t), andhm(X, y, t), resp-
ectively, are approximated oy, (x, y, t; j, k, n), x5 (X, y, t; j, k. n), f¥(x, y.t; j, k, n),
andh’ (x, y, t; j, k, n). They will be defined shortly. Let

m(X Y, t; . K, n) (Um)] kT (Umx)] k(X — X, k) + (Umy)] k(Y — Yi. k)
+ (Umt)]’,k(t —t", m=123 4, (5.12)

where(um)'J1 ko (Umx) | (Umy) | s and(umt) « are constants in Sk, k, n).

Let (DT (F)T e (F o)k and (f e)”k denote the values ofy, f¥, f1,, and
f%z, respectively; wheru,, m=1, 2, 3, 4, respectively, assume the values(ufn)J,k,
m=1,23,4. Foranyn=1,2, 3,4, let

4

def
)| TEDY (X k(ulx)?_k. (5.13)

=1

Similarly (fX y)J o (F0 T (Fr0T k0 (AT 4 and( fm"  are defined by replacing (i) both
superscriptg in Eq. (5.13) withx or y and (ii) both subscripts in Eq. (5.13) withx, y, ort.
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Because (i)
8fx a
Z ey Y m=1234 (5.14)

and (ii) the expression on the right side of Eq. (5.13) is the numerical analogue of that
the right side of Eq. (5.14) aX; k, Yj.x, t"), (f1,01 « will be interpreted as the numerical
analogue of the value &ff X /0x at (X; k., Y.k, t"). Similar interpretations will also be given
to (fo) T (Fod T (Fd s (Faiy) o and(f ) k- As aresult, we define
fr 0yt k) (1) T 4 (50T = X100 + (£2) T (v = ¥i0
+(fa) =t m=1234 (5.15)

and

fy*(x Y, t; ] k,n) = = ( ) ik + (fr'r)qx)rj]’k(x - ijk) + (fr%/y):],k(y - Yj,k)
+(f7)], @ —th, m=1234 (5.16)

Also, as an analogue to Eq. (5.9), we define

he o, Yt 1k M) E (FX 0y, b 0k ), B2 Y 6 1 K ), U0 Yt Lk, ),
m=1234 (517)

Note that, by the|rdef|n|t|ons (K)fm Mo (Fa) o ()i and(f) ' are functions of
(um)J wm=1 23 4; (i) (fX, k and(f X)n « are functions otum) P and(umx)J KL M=
1,2, 3,4 (iii) (fX y)”k and(f y)”k are functions of(um)!  and (umy)] wm=123 4,
and (iv) (fX)7 1K and(fy)" !« are functions ofum)" Tk and(umt)J,k, m=1, 2, 3,4.
Moreover, we assume that, for agy, y, t) € SE(j, k,n),and anym=1, 2, 3, 4,

aur(x, vy, t; j, k, n) At (x,y,t; j,k,n) Aty (X, v, t; j, Kk, n)
at ax ay

—0. (5.18)

Note that Eq. (5.18) is the numerical analogue of Eqg. (5.7). With the aid of Egs. (5.1
(5.15), (5.16), and the definitions ()frﬁx) and(fy y)J . EQ. (5.18) implies that, for any
m=1,2 3,4,

4
(Umt) e = _(fri(wx)r;,k —(fay) Tk = Z [ o + T eUey] Tk (5.19)
=1

Thus,(umt)?,k is a function of(um)'J-"k, (Umx)'},k, and(umy)?yk. From this result and the facts
stated following Eq. (5.17), one concludes that the only independent discrete variables
need to be solved for in the current marching schemeuam‘,k, (umx)T‘k, and(umy)rj‘,k.

Consider the conservation elements depicted in Figs. 9a and 10a. The Euler counte
to Eq. (3.10) is

?{ hi-ds=0, r=123 m=1234 (5.20)
S(CE (j.k,n))

where(j, k, n) € Q.
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To proceed further, we shall introduce the Euler counterparts of Egs. (3.16), (3.17), (3
and (3.22). For anyj, k, n) € , let

foe)" )"
( ml)j}’k defr-1 ( ";’Z M) me=1234 (5.21)
(frz,e)j,k (fm,e)j,k

(Ume)? (Umx)'f
< mg J,k>d=eth< ™HK)  m=1.234 (5.22)

(Umn)?,k (Umy)?.k

and

The normalized counterparts of those parameters defined in Egs. (5.21) and (5.22) ar

3At 3At
(0] % oap (o) and (WL E o0 (Rl 629

and

def AL def A7)
Ut 5 (Um)j . and U = 5 Um) ke (5.24)

To simplify the following development, we may strip from every discrete variable in.
equation (orin a statement) its indicg%, andn if all variables are associated with the sam
mesh pointj, k, n) € Q. Letu, u;, uj, andu,;“, respectively, be the A4 1 column matrices
formed byum, Umt, Uf,, @nduy, . m=1,2, 3, 4. LetF** andF"*, respectively, denote the
4 x 4 matrices formed by, and f',, m, ¢ =1, 2, 3, 4. Let| be the 4x 4 identity matrix.
Let the 4x 4 coefficient matriceL P+, =1, 2 andr, s=1, 2, 3, be defined using a set

of equations that are exactly identical to Egs. (3.27)—(3.35) except that

(1) eachs, 9% be replaced by its Euler image9* and

(2) v¢, vy, and any real numbep, be replaced by their Euler imagés+, F"+, and
o1, respectively.
Note that matrix multiplication is not commutative. Thus, in applying the substitution rt
(2), the order of factors in any product in Egs. (3.27)—(3.35) should not be altered.

As will be shown, under the above and other rules of substitution to be given later, m
parameters, variables, and equations introduced in Sections 3 and 4 have their desic
Euler images. It can be shown easily that the Euler images of Egs. (3.49) and (3.50) are
valid. Note that, for simplicity, hereafter the Euler image of an equation such as Eq. (3
may be denoted as Eq. (EI-3.49).

Equation (5.20) is evaluated in Appendix C of [7]. This evaluation is greatly simplifi
by the fact thauy, (x, y. t; j, k, n), fX*(x, y, t; j, k, n), and f¥*(x, y, t; j, k, n) are linear
in X, y, andt (see Egs. (5.12), (5.15), and (5.16)). As a result of that fact, Eq. (5.17) impl
that, for anyr =1, 2, 3, the total flux ofh}, leaving CE(j, k, n) through any one of the
six quadrilaterals that form its boundary is equal to the scalar product of the \egtor
evaluated at the centroid of the quadrilateral and the surface vector (defined in Section
the quadrilateral. Letj, k, n) € 4. Then, with the aid of Eq. (5.11), for any pair @fand
r (g=1,2andr =1, 2, 3), the final evaluation results with= 1, 2, 3, 4 can be combined
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into the matrix form

n-1/2

[Z(q)+u+2(Q)+u++2(q)+ } — [Er(‘i)_quEr(g u++2(q)— }(j,k;q,r)’

(5.25)
Equation (5.25) is the Euler image of Eq. (3.26) under the substitution rules (1) and
3)u, u, uj, andu;" be replaced by their Euler imagesu, uj, andu;’, respectively.

Note that (i) for each(j, k, n) € Qq,q=1, 2, Eq. (5.25) represents a system of three
matrix equations while Eq. (3.26) represents a system of three scalar equations; (ii) m:
multiplication is not commutative; and (jii) the coefficient matricg§’* are functions of
u? while the coefficients,$’* are constants. As a result, in spite of the fact that Eq. (5.2t
shares with Eq. (3.26) the same algebraic structure, as will be shown shortly, the alget
structure of the solution to Eq. (5.25) is more complex than that of Eq. (3.26).

Using an argument similar to that leads to Eq. (3.51), one concludes that the Euler im
of Eq. (3.51) is also valid.

Note that, for any j, k, n) € 4, the matrices =,y )" ., r = 1, 2, 3, are known functions
of uf . Thus they can be evaluated after the latter is evaluated using Eq. (EI-3.51). Ass
ing the existence of the inverse of each of the matri A Tk one can also evaluate
S9(q=1,2andr =1, 2, 3), where

def -1 ( )— (oQ)— n—-1/2
VL= ] x =P uesdw S u s, (526)
Note that the above inverse must exist if the lo€&L number at(j, k, n) is less than
2/3 (see a theorem in Appendix D.3 in [7]). Moreover, numerical evidence suggests t
generally it is safe to make the existence assumption as long as th€klcaumber<1.
By multiplying Eq. (5.25) from the left with

[(E“”*)J k} -1

repeatedly with all possible pairs of andr, and using Egs. (EI-3.27)—(EI-3.35) and
Eqg. (5.26), one obtains a set of equations [7] that are the Euler images of Egs. (3.:
(3.42) under the substitution rules (2), (3), and

(4) eachs'@ be replaced by its Euler imagg® .

Let u§+ and ua+ be defined using the Euler image of Eq. (3.53) under the substitutic

rules (4) and

(5) u?* anduz+ be replaced by their Euler imaga$+ andujj*, respectively.
Then the validity of Eq. (EI-3.52) follows from Eqgs. (EI-3.37)—(EI-3.42). The 2D Eule
a scheme is formed by Egs. (EI-3.51) and (EI-3.52). This scheme is a two-way march
scheme in the sense that the conservation conditions Eq. (5.20) can also be used to con
its backward time marching version.

Note that the matrice(§,(g>+)rj‘,k are nonlinear functions mfj“k Thus, for eachyj, k, n) €
Qq,q=1, 2, Eq. (5.25) represents a system of three nonlinear matrix equations. Gener
one would not expect that Eq. (5.25) can be solved through a noniterative explicit procec
as described above. The key to the unexpectedly simple solution procedure is the fact
u? can be evaluated explicitly using Eqg. (EI-3.51). In the following, we will explain hov
Eq. (EI-3.51) arises and give a hint on how to preserve the simplicity of the current solut
procedure in case an irregular spatial mesh is used.
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Note that, because of Eq. (4.1),
]{ h* -ds=0, (j,k,n)eQ (5.27)
S(CE(j.k,n))

is the direct result of Eq. (5.20). According to Eq. (4.0&(j, k, n) is the hexagonal
cylinder AB'C’'D'E'F'ABC DE F depicted in Figs. 9a and 10a. Except for the top fac
A'B’'C’'D’E’F’, the other boundaries of this cylinder are the subsets of three solution
ments at thgn — 1/2)th time level. Thus, for anyn=1, 2, 3, 4, the flux ofh}, leaving
CE(j, k, n) through all the boundaries except the top face can be evaluated in term
the marching variables at tha — 1/2)th time level. On the other hand, because the tc
face is a subset of S k, n), the flux leaving there is a function of the marching variable
associated with the mesh poiijt k, n). Furthermore, because the outward normal to the t
face has no spatial component, the total flukigfleavingCE(j, k, n) through the top face
is the surface integral aff, over the top face. Because the center of SE, n) coincides
with the center of the top face, it is easy to see that the first-order terms in Egs. (5.12
not contribute to the total flux leaving the top face. It follows that the total flux leavil
the top face is a function aiim)j , only. As a result of the above consideration®, can
be determined in terms of the marching variables at(the 1/2)th time level by using
Eq. (5.27) only. Equation (EI-3.51) is the direct result of Eq. (5.27).

From the above discussion, it becomes obvious that, in case an irregular spatial me
used [12, 13]u7 can still be expressed as a simple function of the marching variable:
the (n — 1/2)th time level as long as the mesh pojfpik, n) is located at the center of the
top face ofCE(j, k, n). Note that in this case the three top face€&f (j, k, n),r =1, 2, 3,
generally do not meet at the mesh pdiptk, n).

5.2. The 2D Euler a¢ Scheme

Equation (5.27) is assumed in the 2D Ewder scheme. As a result, Eq. (EI-3.51) is alsc
applicable to the new scheme.

To construct the rest of the scheme, consideri@nlg, n) € Qqandanyn=1, 2, 3, 4. Let
(UG kg Une) ]k and(ug, )] be defined by a set of equations identical to Egs. (4.2
(4.6), and (4.7) except that the symbaolsu, u, ug, and ufl in the latter equations are
replaced, respectively, by the symb@lg,), Um, Umt, uﬁk, anduy,, in the former equations.
Furthermore, letur,;)7, and (u)] « be defined using an equation that is identical t
Eq. (4.8) except that the symbojgﬂ ug, ugﬂ anduy in the latter equation are replaced
respectively, by the symbois;, uf,, Ugys andug, in the former equation.

Moreover, letu’, ug, uy, u‘;*, andu:*, respectively, denote the>41 column matrices
formed byuy,, uf,.. ug, . ust, andugt . m=1, 2, 3, 4. Then one can obtain a set of equation
[7] that are the Euler images of Egs. (4.3), (4.4), and (4.6)—(4.10) under the substitt
rules (2), (3), (5), and

(6)U’, ug, ug, u‘;?*, andu;* be replaced by their Euler image’s ug, uy, ugt, andug*,
respectively.
Note that it should be understood that the parameteiEqgs. (4.9) and (4.10) also appear:
as the same scalar (not as required by the rule (2)) in Egs. (EI-4.9) and (EI-4.10).

The 2D Eulera-¢ scheme is formed by Egs. (EI-3.51), (EI-4.9), and (EI-4.10) for ar
(j, k,n) € Qq.
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5.3. The 2D Euler ae-a-8 Scheme

If discontinuities are present in a numerical solution, the above Euler schemes are
equipped to suppress numerical wiggles that generally appear near these discontinuitie
the following, we shall describe a remedy for this deficiency.

As a preliminary, for anyj, k, n) e Qq, anym=1,2,3,4,and any =1, 2, 3, let

def ,
Xmr = (=1 [Um)] k= (U kg (5.28)
def def
(Ui)”  EG . Xmz xma). (UG E GO 1. X2, Xma)  (5.29)
def def
(ugrr])x)f; K — = (r)(xm 1, Xm, 2, Xm, 3) (U;Tr])y)T K= e (r)(Xm 1, Xm,2, Xm, 3) (5.30)

Heregé” ©, gy, andg(’, r =1, 2, 3, are the functions defined by( x,, andxs are any

> 9

real numbers)

0 (X1, Xa. Xa) &' — (2% + X9) /AL, 9P (X0, Yo Xa) & — (2 + 2x9)/An  (5.31)

92 (X1, Xz, x3) &' (2x1 + xg) /AL, 9'? (x4, X2, xa) &' (x1 — X3)/An (5.32)
3) (X1, X2, X3) (X1 — X2)/ AL, 9(3) (X1, X2, X3) (2X1 + X2)/An (5.33)
3b 3b —
g (x4, X2, X3) d=91‘—*(X2 + Xa), (l) (X1, X2, X3) = def (S0 + w)¥a o { w)Xs (5.34)
2w 2wh
3X1 3b X1 + 2wX
92 (X1, X2, X3) ey (2)(X1, X2, X3) def_ G0+ w)Xa + 2w (5.35)
2w 2wh
3X 3b)x; + 2wx:
0 (x4, Xo, ¥g) 2L 9% (x4, Xz, X3) &' (w = 304 + 2wxe. (5.36)
2w 2wh

To proceed further, for angj, k, n) € Qq, g =1, 2, consider any fixed value afi=1, 2,
3, 4. Let Py, Qm, and Ry, be the three points in the-n-u space with (i) theirz- and
n-coordinates being those of the mesh poifits k; q,r),n—1/2),r =1, 2, 3, respec-
tively, and (ii) theiru-coordinates bein@uy,){| «.qr): ' =1, 2, 3, respectively. LeOr, de-
note the point in the-n-u space with the coordinatésA¢s, kAn, (Um)?,k)- Letplanes 1, 2,
and 3, respectively, be the planes containing the following trios of points: (i) pPOHt&m,
andRy; (i) points Op,, Ry, andPy,; and (i) pointsOp,, Py, andQm. Then it can be shown
that [7], at any point on planer =1, 2, 3, we have

du r au
<3§),, = (Une)e <8n>¢ = (um)] (5.37)

and

ou au
(), -6 () -omi o

Thus, at any point on plarrer =1, 2, 3, we have

n

IVu| = (emo?,k“:ef{ () + (ua?y)z] . (5.39)
j.k
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Note that, by definition(@mr)';’k,r =1, 2, 3, are scalars. For readers who are not familic
with tensor analysis, note théir)' , would not be a scalar and therefore the first equali
sign in Eq. (5.39) would not be valid if})) andug), in the same equation, respectively, ar
replaced by, andu).

For any(j, k,n) € @, let

A A
oS, u g, (5.40)
6 6
Then it can be shown that [7]
c+ 1 D+ @+ )+ c+ 1 D+ 2+ 3+].
Ume = 3 [Umg " + U U |, Uy, = 3 [y + U " +um ] (5.41)

i.e., Ut (uS!) is the simple average off)" (u)*), r =1, 2, 3.

By using an argument similar to that used to justify the introduction of a special weigh
average defined by Egs. (4.38) and (4.39) in [2], two weighted averages, respectivel
ug," andu®)*, r =1, 2, 3, are defined here by (s any number 0)

07 if 9ml = 9m2 = 9m3 =0

def
urt = . . . 5.42
m¢ (Ormobe) U™ + O “ U™ + (B o) “ Uy otherwise (5.42)

Om1Om2)* + (Om26m3)* + (Omzbm1)* ’

and a similar definition in which all the subscripfsin Eq. (5.42) are replaced hy.
Obviously up/ =ur; andupt =ug if «=0. Note that, to avoid dividing by zero, in
practice a small positive number such as®amay be added to the denominators on th
right side of Eq. (5.42).

Note that the denominator in Eqg. (5.42) vanishes if 0 and any two of,;, 6m2, and
Omaz Vanish. Thus, consistency of Eq. (5.42) requires proof of the propositips 6m, =
Omz =0, if any two 0f6n1, 62, anddmg vanish. The proof is given in [7]. Also note that, as
a result of the above definitions, it can be shown that [7]

ufuf)‘zr =Up and up; = U?nJZ, if Om1 = Omz = Oma. (5.43)

Let ug’”*(u;;“r) be the column matrix formed mj(u%;;), m=1, 2, 3, 4. Then, for any

(j, k, n) € 2, the 2D Euler-¢-a-B8 scheme is defined by Eq. (EI-3.51) and
U] = (UF) ]y 26 (U —ug") T + AU —ugh) ], (5.44)
and

Ui = (W) 26 (U —uit) T + By —uit) (5.45)
Here (i)e andg are adjustable parameters; and I@W andu;;”r are implicitly dependent
on the adjustable parameter The scheme reduces to the 2D Euder scheme if§ =0
or o =0. It further reduces to the 2D Eulerscheme if, in addition¢ =0. Note that a
discussion on how to choose the values of the parametetsandg will be given later in
this section.
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Note that numerical dissipation is added to the 2D Ealera-8 not through the main
equation Eq. (EI-3.51) (which is equivalent to the conservation condition Eq. (5.27)). Rat
it is introduced through two secondary equations which evaluate spatial derivatives.
suspect that this special feature, which is common to all CE/SE schemes, contributes t
accuracy of the CE/SE method.

Furthermore, note that the numerical dissipation introduced can be divided into t
different types. Numerical dissipation eftype, i.e., that results from adding the seconc
term to the right side of each of Egs. (5.44) and (5.45), generally is very effective
damping out numerical instabilities that arise from the smooth region of a solution. E
it is less effective in suppressing numerical wiggles that often occur near a discontinu
On the other hand, numerical dissipationoef3-type, i.e., that results from adding the
third term, is very effective in suppressing numerical wiggles. Moreover, because, for e
m=1, 2, 3, 4, Om1, Omz, andbnz are nearly equal in the smooth region, Eq. (5.43) implie:
that(u?’* Tk and(ug+ T are also nearly equal there. As a result, numerical dissipation:
a-B-type has very slight effect in the smooth region.

According to Eq. (5.26), at each mesh poinq, g =1, 2, implementation of the above
Euler schemes generally requires inverting three matrices (corresponding 102, 3).

As a result, the schemes may be referred to as locally implicit. In the following, we sh
describe how these schemes can be simplified and become completely explicit.

5.4. The Simplified 2D Euler Schemes

Equation (5.27) is assumed in the simplified schemes. As a result, Eq. (EI-3.51) is ¢
applicable to the new schemes.

To construct the rest of the simplified schemes, we assume that the coefficient matr
2,“}” vary only slightly among neighboring mesh points. Thus,

@+\" (@412
(Erg +) ik (Er? +)(j,k;q,r)' (5.46)
Note that, according to extensive numerical evidence, the above approximation genel
is accurate for subsonic, transonic, and supersonic flows as long as the mesh interval:
time-step size used are small enough. With the aid of Egs. (EI-3.27)—(EI-3.35), a substitu
Eqg. (5.46) into Eq. (5.26) reveals that [7]

@ ~dD q=1,2 r=123 (5.47)
S

wheres'® are defined using a set of equations that are exactly identical to Egs. (3.43)—(3.
except thag®, u;, u;, v, v,, and any real numbep are replaced bg®, uf, uf, F¢*,
F7t, andg|, respectively, using the substitution rules (2), (3), and

(4a) eachs@ be replaced by its alternative Euler imagfé.
Note that, according to (45 is also a Euler image of?. Thus, to avoid confusion,
hereaftes® is referred to as the alternative Euler images6f.

Furthermore, as a result of Egs. (5.417?’,+ and u";‘/““ are defined using the alternative

Euler image of Eq. (3.53) under the rules (4a) and

(5a) u"g‘+ and u§+ be replaced by their alternative Euler imagu§’§r and u§/+, res-
pectively.
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The simplified schemes differ from the original schemes only in the facu@#aemduj;“r
inthe latter schemes, respectively, are replacemf’b“yandu‘;‘”r inthe former schemes. Note
that the Euler schemes presented in [2] are the 1D counterparts of the current simp
schemes. The 1D counterparts of the full Euler schemes are described in [7].

5.5. Remarks on the Parametersa, and 8

According to numerical evidence and the analysis given in Section 7 of [7], stabi
of the current Euler solvers requires that (ix@ <1, (ii) 8 >0, (iii) « >0, and (iv) the
maximalCFL number<1. Numerical evidence also suggests that the numerical dissipat
introduced generally increases with the value,af, andg.

Lete =1/2 andB =1. Then the 2D Eulea-¢-a-8 scheme and its simplified version
reduce to the same scheme. For gn¥, n) € 2, the reduced scheme is formed by Eq. (El
3.51) and

uH = (u(“”)?,k, and (U], = (u#*)?’k. (5.48)
The above scheme is one of the simplest among the 2D Euler solvers known to the auf
The value otx is the only adjustable parameter allowed in this scheme. Generally, with
choice ofa =1 ora = 2, the numerical dissipation introduced is sufficient to suppress r
merical wiggles. Because it is totally explicit and has the simplest stencil, the scheme is
highly compatible with parallel computing. Furthermore, it will be shown in Section 7 th
in broad applications, the scheme can accurately capture shocks and contact discontir
with high resolution and no numerical oscillations.

Note that, withe, @, and 8 being held constant, numerical dissipation associated wi
the 2D Euler-¢-a-B8 scheme (and its simplified version) at a mesh pojnk, n) tends to
increase as the localFL numben{, decreases. To compensate for this effeendg in
Egs. (5.44) and (5.45), respectively, may be replaced ) ands (v} ), wheree (x) and
B(X), 0<x <1, are monotonically increasing functionsfvith ¢(0) =0 andg(0) =0.
Note that:

(a) Itis shown in Figs. 12—-14 of [2] that, with the choice
e(X) =05xexpl—x) and B(X) =+/X, 0<x<1, (5.49)

an 1D CE/SE Euler solver can be used to obtain accurate shock tube solutions witl
maximalCFL number in each numerical simulation ranging from 0.88 to 0.022.

(b) In a numerical simulation involving a nonuniform mesh, the Id€&L number
may vary sharply across the computational domain. For this case, the local valyes of
anda may be adjusted such that no excessive local numerical dissipation occurs ir
computational domain.

6. NUMERICAL RESULTS

The accuracy of the 22 anda-e schemes were evaluated in [12] using a translatir
Gaussian hill model problem. Also, the accuracy of the 2D Euler solvers describe
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Section 5 was evaluated in [8, 10, 20, 25] by comparing the computed results with exac
experimental results for numerous flow problems involving shocks, contact discontinuiti
vortices, acoustic waves, and their interactions.

To give the reader a clear idea about the accuracy and robustness of the CE/SE me
in general, and yet to not be burdensome with overly extensive numerical results, in-
section we shall focus on the accuracy evaluation of the simplest 2D Euler scheme,
that defined by Egs. (EI-3.51) and (5.48). For reasons that will become clear to the re:
shortly, we begin with a discussion of the concept of dual space-time meshes.

6.1. Concept of Dual Space-Time Meshes

Recall that the mesh point s@tis defined in Section 3 such thét, k, n£1/2) ¢ Q if
(j, k,n) e Q. Let ' be defined such thdt, k, n) e Q" if and only if (j,k,n+1/2) € Q.
As an example, consider Fig. 5a. Poi#tsC, E, andG’ belong to2 while pointsA’, C/,
E’, andG belong toQ’. Obviously any of the 2D schemes described in Sections 3-5, e.
the 2Da scheme, can also be constructed using the mesh ggirksn) € 2’. As a matter
of fact, one can even combine two independenta?§chemes, one constructed using the
mesh points © and the other using the mesh poiats?’, into a “single” scheme referred
to as the 2D duah scheme. A mesh that contains all the mesh points belonging to eitf
Q or ' is referred to as a dual space-time mesh. Note that a CE of a meste@intay
coincide with a CE of another mesh point?'.

Note thaiQ2; (22) was defined in Section 3 so that a mesh pojnk, n) € Q; (2,) ifand
only if (j, k, n) € 2 andn is a half-integer (a whole integer). Similarly, we defig (£25)
so that a mesh poirti, k, n) € Q] (€25) if and only if (j, k, n) € " andn is a half-integer
(a whole integer).

6.2. Initial/Boundary Conditions

The steady-state oblique shock problem suggested by Yee and others [32], one o
test problems to be considered later, will be used as the prototypical case in the follow
discussion.

The computational domain and the shock locatioh& GndE F) are depicted in Fig. 14.
The lower boundary is a solid wall. Assuming= 1.4, then the exact Euler solutions to
regionsABE, AEFD, andECF are

u=29 v=0, p=10 p=10/14 (regionABE), (6.1)
u=26193 v=-050632 p=17000 p=15282 (regionAEFD), (6.2)

D> —<

D
1 F
W = 29°
= 23.279°
0 | | C—»x
B 1 E 2 3 4

FIG. 14. The computation domain and the shock locations of a steady-state oblique shock problem.



THE SPACE-TIME CE/SE METHOD 121

o Mesh points with n = 1/2, 3/2, 5/2, e,
o Mesh points withn=0,1, 2, -
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FIG. 15. The spatial locations and the mesh indiges) of mesh points used in a steady-state oblique shoc
problem(R= S=4).

and

U=24015 v=0. p=26872 p=29340 (regionECF),  (6.3)

respectively.

The mesh used in this test problem is depicted in Fig. 15. Again a mesh(pgdinh) €
Q1 (22) is marked by a solid (hollow) circle. The mesh is a special chseQ) of that
depicted in Figs. 6-8. Note that only the mesh pointQ, are present at the inflow and
outflow boundaries. Moreover, a mesh point and the corresponding marching variable
be identified by the time-level numbeand two new mesh indicesands which are given
in Fig. 15 as a pair of integers enclosed in parentheses. Note that, for the meskegeints
r=123,...,R,R+1ands=246,...,2S. On the other hand, for the mesh point:
€Q,r=123,...,RRR+1ands=1,3,5,...,25—1,2S+1.

With the above preliminaries, the initial and boundary conditions can now be specif
At all mesh points(r, s, 0), it is assumed that (i, m=1, 2, 3,4 are evaluated using
Eq. (6.1), and (ii)

Up, =Up, =0, m=1,234 (6.4)
Furthermore, fon=1, 2, 3, ..., the above conditions (i) and (ii) are applied at all mes
points at the inflow boundarB (see Fig. 15).

At the upper boundanAD, for all n=1/2,1,3/2,2,..., (i) u, are evaluated using
Eq. (6.2), and (iiuy, anduy, are evaluated using Eq. (6.4).

The solid-wall boundary conditions &C will be constructed by assuming that, at an)
timet, the flow fields below and abov@C are the mirror images of each other. By usin
the definitions ot given in Eq. (5.1) and the fact thgt= 0 at any point orBC, it can be
shown that the last assumption implies that

Un(X, =Y, ) = un(X,y,t), m=21,24, and uzX, —y,t) = —uz(Xx,y,t) (6.5)
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OUm oUm oUm oUm
—, -y, ) = —x,y,t) and — X, -y,t) =——X,y,t), m=1,24
ax( A 8X(y) 8y( A9 ay(y)
(6.6)
and
dus dus aus dus
— X, -y, ) =——X,y,t) and — (X, —-y,t) = —(X,y,1). 6.7
o X TY-D ax X Y- D ay(x y. ) ay(xy) (6.7)
The numerical boundary conditions corresponding to Egs. (6.5)—(6.7) are
(Un)kszs = Umgs: M=1,24, and (U3)g,1s=—(U3)Rs: (6.8)
(Umx) & R+ls — (Umx)Rs and (Umy)R+1,s = _(Umy)g{,s, m=124, (6.9)
and
(u3X)r|]Q+]_,s = _(U3X)r|]{s? and (u3y)r|]Q+1’s = (u3y)r|1{s? (610)

respectively. According to Fig. 15, the rangesdh Egs. (6.8)—(6.10) is dependent on the
time leveln. Let (i) S =Sif Sis even; and (i)S =S—1if Sis odd. Then (i)s=4, 8,
12,...,28if n=1/2,3/2,..., and (i)s=1,5,9,...,2S+1if n=1, 2,.... Further-
more, by using Eq. (C.4) in [7] witb =0, it can be shown that Egs. (6.9) and (6.10) are
equivalent to

(ut me)RiLs = (ut JRs and (u Rers = (U Jrs M=124 (6.11)
and
(U-S'_{)?ﬂ—l,s (U3T7)RS’ and (USn R+1ls — (uaz)Rs’ (6'12)

respectively. Equations (6.8), (6.11), and (6.12) are the boundary conditions at the lo
wall (a solid wall).

At the outflow boundar D, foranyn=1,2,3,...,andr =1, 2,3, ..., R, we assume
that
n n—1/2
(Um)fosis = (Um)ros ™, M=1,2,34 (6.13)
(Umx)P,zs.H =0, m=1234 (6.14)
and
(Umy)osi1 = (Umyr2d>, m=1,2,3 4. (6.15)

Note that, becaude=0, Egs. (6.14) and (6.15) are equivalent to
1 _
(U zsi1 = 5 (U, — U, s, m=1234 (6.16)
and

1
(U )zsi1 = 5 (U, = Utras s, m=1,234, (6.17)
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Thus the marching variables at the outflow boundary can be determined using Egs. (€
(6.16), and (6.17). Note that, according to the numerical results to be presented, the ou
boundary conditions are nonreflecting in nature.

With the aid of the above initial and boundary conditions, the marching variables af
mesh points (including those located at the bottom solid B&l) can be determined by
using the scheme defined by Eqgs. (EI-3.51) and (5.48).

In the oblique shock problem described above, only a horizontal solid wall is presen
other 2D test problems to be described later, both horizontal and vertical solid walls |
be present. As will be shown immediately, imposing the solid-wall boundary conditic
at a vertical wall over a uniform mesh similar to that depicted in Fig. 15 is slightly mc
complicated than that at a horizontal wall.

Consider the mesh depicted in Fig. 16a. B& andC D be solid walls. Note that, given
any exterior mesh pointR+ 1, s, n) that lies immediately belovBC, one can find an

e Mesh points withn = 1/2, 3/2, 5/2, - - -
o Mesh points withn=0,1,2,---.

S (o . o .
0,1) ©,4) ©,5 0, 2S
l a0 e, 0
r | (1,2) (1, 3) (1 6) 1, 23—1) i

(1°0) ! ;1) (.4 (a.5) ,29) }(1,2§+1)
G ICE @8 @ |
[ ] | o [ ] o L] | o]
@0 | @1 24 @9 2,25 l225+1)
N @'o  @zsn
[ ] 1 (o] . o L] Q
G0 | 6 @49 @9 (3,25 l@3,25+1)
[ ®2  ®Y R @51 | y
L J O L =} [ f =}
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e o e O e e e e e O d X
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(R+1,1) (R+1,4) (R+1,5) (R+1,2$)
b A Mesh points with n =1/2, 3/2, 5/2, -- - .
A Mesh pointswithn=0,1,2,---
s A A A A
A OD 089 09 ©,28)
1————A————-—A.- ———————— A————A———-—r
r 1 L2 @3 .6 (25 |
A | A A A i A
1,0 | 1 4 05 (.29 11, 2841)
A A A
| @2 @3 @6 (@21 |
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A ! A A A a [ A
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A A A A
(R+1,1) (R+1,4) (R+1,9 R+1,28)

FIG.16. The spatial locations and the mesh indiges)of mesh points used in a problem with both horizontal
and vertical walls. (a) Mesh points<2. (b) Mesh pointss Q.
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interior mesh point that lies at the same time level and also is the mirror image (relat
to BC) of the exterior mesh point. As a result, the solid-wall boundary conditions Egs. (6.¢
(6.10) can be imposed. Contrarily, given any exterior mesh ggigs+ 1,n),n=0,1, 2, . ..
that lies immediately to the right & D, one cannot find an interior mesh point that lies at
the same time level and is the mirror image (relativ€ @) of the exterior mesh point. As
a result, the mirror image conditions for the vertical wa, i.e.,

(Umi2s11 = —(Umx)ros and (Umy)yzsi = (Umyios, M=1,3,4  (6.19)
and
(U2x)223+1 = (UZX)2251 and (U2y):23+1 = _(UZy)st (6.20)

cannot be used directly as the solid-wall boundary conditions.

Two approaches can be used to overcome the above difficulty. In the first and m
restrictive approach, the following approximate forms of Egs. (6.18)—(6.20) are used as
solid-wall boundary conditions:

(Umiosis = (Upios, M=1,34, and (Ua)s,1 =—(Uprps  (6.21)

(Umx)p,szrl = _(Umx)ngé/z and (Umy)p,szrl = (Umy):;é/z, m=134 (6.22)
and
(U2x)225+1 = (U2x)2£é/27 and (U2y)gzs¢.1 = _(U2y):£é/2~ (6-23)

Here(u;n)ﬂzs, m=1, 2, 3, 4, are evaluated using the known marching variables at the me
point (r, 2S, n — 1/2) with the aid of the first-order Taylor's expansion.

In the second and generally more accurate and preferable approach, the present mar
procedure is applied over a dual mesh, i.e., the combination of two staggered space-
meshes depicted in Figs. 16a and 16b. As shown in Fig. 16b, a meshegpfiihis also
identified by two spatial indicasands and the time-level number. Furthermore, a mesh
pointe Q] (€25) is marked by a solid (hollow) triangle.

Note that: (i) forn=0,1,2,..., (r,2S+ 1, n) is a mesh poirk  while (r, 2S, n) is
amesh point ', (i) for n=1/2,3/2,5/2, ..., (r, 25+ 1, n) is a mesh poing " while
(r, 2S,n) is a mesh point €, and (iii) for anyn=0, 1/2,1, 3/2, ..., the mesh points
(r, 2S+ 1, n) and(r, 2S, n) lie at the same time level and, relative@®, are mirror images
of each other. As a result, at any time level, the solid-wall boundary conditic@®atan
be imposed using Egs. (6.18)—(6.20). Note that, as a result of these boundary conditi
the marching variables associated with the mesh p@in@are now coupled with those
associated with the mesh poirgsQ’. Also note that the Egs. (6.19), (6.20), (6.22), anc
(6.23) can easily be converted to the versions associated with,thecoordinates by using
Eq. (C.4) of [7] withb=0.

Imposing the conditions Eqs. (6.18)—(6.20) directly requires the use of a dual mesh.
aresult, it has the disadvantage of doubling computational cost. However, the extra cos
longer becomes an issue in a case in which its use is mandatory, e.g., a numerical simul
involving unstructured meshes [13, 14].
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6.3. Four Test Problems

Inthis part, one steady-state problem and three time-dependent problems are solved
the scheme defined by Egs. (EI-3.51) and (5.48). A steady-state solution is obtained ¢
converged solution of the time-marching procedure. In all numerical simulatoa<
is assumed throughout the entire computational domain. Beeaissihe only adjustable
parameter in the present scheme, the same numerical treatmentis applied at all interior
points for all four test problems. Also note that, without exception, the numerical result
be shown are those of the entire computational domain; i.e., no buffer-zone technique
used.

To pave the way for the following presentation, a further discussion of the space-t
mesh depicted in Fig. 15isin order. According to Fig. 15, ateach timetevdl], 1, 2, . . .,
there areS+ 1 staggered columns of mesh points (marked by hollow circles) with ee
column containingR + 1 mesh points. Thus, there a8+ 1) x (R+ 1) mesh points at
each of these time levels. Furthermore, because two neighboring columns are separa
a distancew while two neighboring mesh points in any column are separated by a dista
2h, we haveS=W/w and R=H/(2h), whereW andH are the width and height of the
computational domain, respectively. If the first, the third, the fifthcolumns were moved
upward a distanch, then the mesh points marked by hollow circles would form a regul
Cartesian spatial mesh withand R mesh intervals in thg- andy-directions, respectively.
As a result, the mesh formed by the mesh points marked by hollow circles will be refel
to as aSx R mesh.

Similarly, at each time levaet=1/2, 3/2, ..., there areS staggered columns of mesh
points (marked by solid circles) with each column containidg 1 mesh points. Again
two neighboring columns are separated by a distanead two neighboring mesh points
in any column are separated by a distanicel2 this paper, the mesh formed by these mes
points will also be referred to assax R mesh. In general, regardless of how its columns ¢
mesh points are positioned, a spatial mesh covering a rectangular computational dom
width W and heightH will be referred to as &W/w) x (H/(2h)) mesh if two neighboring
columns of mesh points are separated by a distanard two neighboring mesh points in
any column are separated by a distanke 2

For the dual mesh referred to earlier, there are two sets of mesh points at one time |
If each set forms &@W/w) x (H/(2h)) mesh, then the dual mesh will be referred to as
dual(W/w) x (H/(2h)) mesh.

From the above analysis and the fact that it requires two marching steps to advance
time periodAt in the CE/SE method, the total number of space-time mesh points involy
in a 2D CE/SE simulation is approximately equal2d /At) x Sx R, i.e., about twice that
of a 2D single-step regular-mesh simulation if each simulation uSes B mesh and both
have the same values aft and total simulation tim@& . Note that, in the special case that
dual S x R mesh is used, the total number of mesh points involved in a CE/SE simulat
is approximately equal t4T /At) x Sx R.

To give the reader some idea about the computational efficiency of the present sch
note that, for a 30& 120 mesh, the CPU time on a Cray C90 required to execute 1
marching stepsT(=180x (At/2)) is only 14 s, i.e., about 2.16s per mesh point per
marching step.

6.3.1. Oblique shock problemThe computational domain, mesh structure, and in
tial/boundary conditions used in the current simulations of this problem were describe
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FIG. 17. Pressure contours and pressure coefficiegt=20.5 of the oblique shock problem (6020 mesh).

Section 6.2. A numerical simulation is carried out using a<@D mesh withAt =0.01.
The resulting steady-state density contours and the pressure coefligier2(p/ psc —1)/
(yM2) with M, = 2.9 andpy, = 1.0/1.4 being the inflow Mach number and pressure, re
spectively) ay = 0.5 are plotted in Fig. 17, where the solid line represents the exact solutic
The improvement in shock resolution by using a finer ¥24D mesh can be seenin Fig. 18.
No numerical oscillations are detected near either the incident or the reflected shocks,
the computed, agrees very well with the exact solution. Moreover, the reflected shock
as crisp as the incident shock.

6.3.2. 2D supersonic flow past a stefConsider the supersonic channel flowhf = 3.0
past a step depicted in Fig. 19. This benchmark problem was used to test Harten’s T
ULT1C scheme [33], Giannakouros and Karniadakis’s spectral element-FCT method [:
and Van Leer’s ultimate conservative difference scheme [35]. It was also used by Woodw
and Colella [36] to compare the accuracy of different numerical methods in handling a sh
discontinuity.

Note that the upper corner of the step is the center of a rarefaction fan and hence
singular point of the flow. According to Woodward and Colella[36], unless special numeri
treatments are applied near the corner of the step, the computed solutions would be seri

0.75 ]
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S 02s - AI 3

0.00 ----«-—-----J -

025t :

0 1 2 3 4

FIG. 18. Pressure contours and pressure coefficiegt=a0.5 of the oblique shock problem (12040 mesh).
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FIG. 19. Geometry and grid distribution of the 2D supersonic flow past a step problem.

affected by large numerical errors generated in the neighborhood of this singular poit
will be shown immediately that satisfactory numerical solutions can be obtained by
present scheme without employing special treatments at the upper corner of the step.

The mesh used in the current simulation is also depicted in Fig. 19. Note that no n
pointis placed at the singular point at the upper corner of the step. The initial conditions
set to be the free stream conditions. Furthermore, the constant free stream conditior
imposed at the inlet while the nonreflecting boundary conditions Egs. (6.13), (6.16),
(6.17) are imposed at the exit. In addition, the reflecting (solid-wall) boundary conditic
are imposed at all other boundaries.

To show the improvement in flow solutions with decreased mesh spacing, the del
contours ofthe solutions obtained by the present solver with 80, 120x 40, and 240« 80
meshes are shown respectively in Fig. 20. Note that the valuag oked in the above
computations are identical to those used in [36], i.9005, 0005, and 025, repectively
(CFL = 0.8). FromFig. 20, itis seen that the Mach stem, triple point, slip surface, expans
fan at the corner, and the interaction between the reflected shock and the rarefaction \
are accurately simulated in the present solutions. Note that an alternate simulation in w
the dual-mesh reflecting boundary conditions Egs. (6.18)—(6.20) are imposed at the ve
step wall yields almost identical results.

6.3.3. Shock reflection from a dust layeHere, a practical problem of shock reflectior
from a dust layer is studied. Following the wedge model described in [37], we consi
a plane shock moving to the right with Mach numidg=1.41 toward a wedge whose
surface is inclined at anglg,, as shown in Fig. 21. Square protuberances of ki are
placed at equal distancésapart on the surface to simulate dust particles. The comm
origin of the two coordinate systen(s, y) and(x’, y') is situated at the tip of the wedge,
with the x’- andy’-axes being parallel and normal to the wedge surface, respectively.

As depicted in Fig. 22, the computational domaid(5 < x’/L <7.0and 0< y'/L <4)
contains seven protuberances. The front of the incident shock thus makes afy anite
they’-axis. Att = 0, the computational domain is divided into two flow regions by the sho
front that intersects the'-axis atx’/L = —0.4. Standard stationary atmospheric condition
are assumed in the region to the right of the shock front, while constant fluid conditions \
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FIG. 21. Shock moving past a wedge with a dust layer.
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FIG. 22. The computational domain of the dust layer problem.
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Ms = 1.41 are assumed in the other region. Reflecting boundary conditions are imposed
solid walls, while nonreflecting boundary conditions are implemented both at the inlet
outletand onthe part of -axis with—0.5 < x’/L < 0, through which waves can move freely.
Onthe upperboundary(/L = 4), where the reflected waves have not reached before the
ofall simulations, numerical values are assigned ahead of and behind the plane shock ac
ing to the exact solution. Computations were carried ot foe 20°, 30°, and 40, respec-
tively, using a 300« 180 mesh withAt = 0.01, wheret is made dimensionless usihgas
the reference length and the speed of sound in the undisturbed region as the reference
In order to show a clear comparison between the experimental and computed result
CE/SE solutions are plotted in tli®, y)-coordinates through a coordinate transformatior
First, to show the unsteady evolution of wave patterns resulting from the reflection of st
waves over the dusty wedge, computed density contours at four different time level:
0, = 30° are plotted in Fig. 23. The effect of varying wedge angle on wave pattern car
observed in the density contour plots shown in Fig. 2&fpe 20° att = 3.8 and in Fig. 25
for 6,, =40 att = 3.0, when the incident shock wave is standing at the upper right cori
of the sixth protuberance. The Schlieren photographs taken from [37] are reproduce
Figs. 26—28 to show representative wave patterns for the égse20, 30°, and 40 at
different instants. In these photographs, (i) Model B and Model D represent the labora
models withL =8 and 2 mm, respectively, and (if) denotes the triple point generated by
the reflection of shock waves from the first protuberance. The locatibrimthex-direction
is indicated by the numerical value gfL in each figure. It is seen that, as the incidern
shock wave moves forward, a compression wave is reflected from each protuberanc
an expansion wave is generated from its back. Gradually, the individual compression w
accumulate to form an envelofi& and a stronger compression walg (see Fig. 27).
For the cases with, = 20° and6,, = 30°, the developments of wave patterns are almo
the same, while foé,, = 40°, a kink pointK appears as shown in Fig. 28. A comparisol
between experimental and numerical results indicates that the photographed wave pa
are correctly captured in the CE/SE solutions. The close resemblance between Figs. 2
26 and that between Figs. 23d and 27 in terms of both wave and vortex structures are cl
recognizable.

6.3.4. Implosion/explosion of polygonal shock waves in a bdke problem concerning
the implosion/explosion of a polygonal shock wave in a square box studied in [38
investigated here. Not only the early stage of the implosion/explosion process, but als
later development, which was not studied in [38], are simulated here.

All simulations are carried out using (i) a dual 24@40 mesh covering a square box
(—2<x,y<2),and (ii) aCFL number=0.9. The reflecting boundary conditions are im-
posed at the four sides of the square box with the understanding that the more acc
dual-mesh reflecting boundary conditions Egs. (6.18)—(6.20) are used at the vertical v

The initial shock wave configuration is a regular polygon. It is assumed that (i) -
polygon shares with the square box the same geometric center (loc&e®xt (ii) one
of the vertices of the polygon is located @ 0.8 x +/3), and (iii) there is a low pressure
region inside the polygon with a pressure ratio of 10 across the shock. Note that, as a |
of (i) and (ii), the vertices of the polygon are points on the circumference of the circle t
has a radius= 0.8 x +/3 and is centered &6, 0).

As the first step, the early flow field is studied for three cases in which the init
shock wave configurations are an equilateral triangle, a square, and a regular pent
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(a) t=0.5

FIG. 23. Density contours for the dust layer problem, =30°) at four different time levels. (a)=0.5,
(b)t=1.75, (c)t =3, (d)t=4.
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FIG. 30. Density contours for implosion/explosion of a hexagonal shock in a square box.

respectively. The computed pressure and density contour plots at different time level
shown in Figs. 38 and 39 of [8], respectively. According to these figures, wave patt
similar to those shown in Figs. 1-5 of [38], obtained using a TVD method on & 35®
mesh, are also observed in the CE/SE solutions, displaying detailed features such as
stems and polygon-shaped flow discontinuities.

As the second step, the implosion/explosion of a hexagonal shock wave is simulatec
the second implosion of the shock wave is observed in the box. More complex flow phel
ena can be seen in the pressure and density contour plots of Figs. 29 and 30, includil
reflections of shock waves, shock—shock interaction, and shock—contact surface intere
It is interesting to note that the shocks and contact discontinuities are still relatively
after multiple reflections of shock waves from solid walls.
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7. CONCLUSIONS AND RECENT DEVELOPMENTS

The space-time CE/SE method was conceived from nontraditional basic beliefs
designed to avoid the limitations of the traditional methods. It was built from ground ze
with a foundation that is solid in physics and yet mathematically simple enough that ¢
can build from it a coherent, robust, efficient, and accurate CFD numerical framework.
this paper, we begin with a clear and thorough discussion of the above motivating id
(Section 1). It is then followed by a rigorous exposition of the 2D theoretical developme
(Sections 2-5).

To evaluate the accuracy and robustness of the 2D Euler CE/SE schemes, the sim
amongthem, i.e., thatdefined by Egs. (EI-3.51) and (5.48), was evaluated in Section 6. It
shown that this scheme can accurately resolve shock and contact discontinuities consist
Furthermore, it was shown that the scheme is genuinely robust, i.e., it is compatible with
simplest nonreflecting boundary conditions, and its accuracy is achieved without resor
to special treatments for each individual case. Moreover, because it is logically simple .
totally explicit, the scheme is also highly computationally efficient. As a result, genera
it is recommeded that the simplest scheme be used except in the difficult case discuss
Section 5.5.

Note that other CE/SE schemes described in this paper have also been shown t
accurate solvers for other applications [8, 11, 20, 21, 25].

The paper is concluded with a discussion of recent CE/SE related developments:

(a) By using the marching variables that are tied to the Cartesian coord{mates
the concepts described in this paper can be easily extended to construct CE/SE Euler sc
for irregular triangular meshes [12] or even unstructured triangular meshes [13, 18]. -
accuracy of these solvers has been validated by comparing the numerical results of nume
test problems with the experimental results. Note that it is shown in [18] that, without usi
any preconditioning technique, the 2D CE/SE method can generate accurate nume
solutions for flows with speeds ranging from Mach numb@&:00288 to 10.

(b) By using tetrahedrons as the basic building blocks of the spatial meshes, a
CE/SE Euler solver compatible with both structured and unstructured meshes has rec
been constructed and described in detail in [14]. The accuracy of this 3D solver and
of another similar 3D Euler solver [18] have been validated using the following test prc
lems: (i) the implosion and explosion of a spherical shock wave in a cubical box, (ii)
supersonic flow over a 3D ramp, and (iii) a hypersonic flod,{= 10) over a 3D half
sphere.

(c) To be compatible with the simplest unstructured meshes, most of the multidima
sional CE/SE solvers were developed using triangles and tetrahedrons, respectively, &
basic building blocks of 2D and 3D spatial meshes. However, it is shown in [22—-25] t
the 2D and 3D nonsplitting CE/SE Euler solvers can also be constructed using rectang
meshes. The accuracy of these new solvers is comparable with that of other CE/SE sol

(d) Several 2D and 3D CE/SE Navier—Stokes solvers using rectangular, triangu
and tetrahedral meshes have also been constructed recently. In [23], two test probl
i.e., (i) shock/boundary layer interaction wih,, = 2 and (ii) natural convection flows in
a square box, are used to validate the accuracy of a 2D CE/SE Navier—Stokes solv
solving both high-speed and low-speed flows.

(e) Both 1D and 2D solvers for flows involving chemical reactions have recently be
developed by Yiet al.[15, 16].
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(f) Anadvanced fluid dynamic code for the simulation of 1D unsteady flows in eng

ducts, named GASDYN, has been developed by Onetaili[17]. An extended 1D CE/SE
scheme capable of dealing with the propagation of chemical species is adopted in the
Itis concluded in [17] that “a comparison of the MacCormack method plus FCT or T\
algorithms with the CE—-SE method has pointed out the superiority of the latter schen
the propagation of contact discontinuities.”
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